PhysLean/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3.lean

192 lines
7.7 KiB
Text
Raw Normal View History

2024-04-17 16:23:40 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
/-!
# The type of solutions perpendicular to `Y₃` and `B₃`
We define the type of solutions which are orthogonal to `Y₃` and `B₃` and prove some basic lemmas
about them.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The type of linear solutions orthogonal to $Y_3$ and $B_3$. -/
structure AnomalyFreePerp extends MSSMACC.LinSols where
perpY₃ : dot (Y₃.val, val) = 0
perpB₃ : dot (B₃.val, val) = 0
/-- The projection of an object in `MSSMACC.AnomalyFreeLinear` onto the subspace
orthgonal to `Y₃` and`B₃`. -/
def proj (T : MSSMACC.LinSols) : MSSMACC.AnomalyFreePerp :=
⟨(dot (B₃.val, T.val) - dot (Y₃.val, T.val)) • Y₃.1.1
+ (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) • B₃.1.1
+ dot (Y₃.val, B₃.val) • T,
by
change dot (_, _ • Y₃.val + _ • B₃.val + _ • T.val) = 0
rw [dot.map_add₂, dot.map_add₂]
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂]
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
rw [show dot (Y₃.val, Y₃.val) = 216 by rfl]
ring,
by
change dot (_, _ • Y₃.val + _ • B₃.val + _ • T.val) = 0
rw [dot.map_add₂, dot.map_add₂]
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂]
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
rw [show dot (B₃.val, Y₃.val) = 108 by rfl]
rw [show dot (B₃.val, B₃.val) = 108 by rfl]
ring⟩
lemma proj_val (T : MSSMACC.LinSols) :
(proj T).val = (dot (B₃.val, T.val) - dot (Y₃.val, T.val)) • Y₃.val +
( (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val))) • B₃.val +
dot (Y₃.val, B₃.val) • T.val := by
rfl
lemma Y₃_plus_B₃_plus_proj (T : MSSMACC.LinSols) (a b c : ) :
a • Y₃.val + b • B₃.val + c • (proj T).val =
(a + c * (dot (B₃.val, T.val) - dot (Y₃.val, T.val))) • Y₃.val
+ (b + c * (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val))) • B₃.val
+ (dot (Y₃.val, B₃.val) * c) • T.val:= by
rw [proj_val]
rw [DistribMulAction.smul_add, DistribMulAction.smul_add]
rw [add_assoc (_ • _ • Y₃.val), ← add_assoc (_ • Y₃.val + _ • B₃.val), add_assoc (_ • Y₃.val)]
rw [add_comm (_ • B₃.val) (_ • _ • Y₃.val), ← add_assoc (_ • Y₃.val)]
rw [← MulAction.mul_smul, ← Module.add_smul]
repeat rw [add_assoc]
apply congrArg
rw [← add_assoc, ← MulAction.mul_smul, ← Module.add_smul]
apply congrArg
simp only [HSMul.hSMul, SMul.smul, MSSMACC_numberCharges, Fin.isValue, Fin.reduceFinMk]
funext i
linarith
lemma quad_Y₃_proj (T : MSSMACC.LinSols) :
quadBiLin (Y₃.val, (proj T).val) = dot (Y₃.val, B₃.val) * quadBiLin (Y₃.val, T.val) := by
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [show quadBiLin (Y₃.val, B₃.val) = 0 by rfl]
rw [show quadBiLin (Y₃.val, Y₃.val) = 0 by rfl]
ring
lemma quad_B₃_proj (T : MSSMACC.LinSols) :
quadBiLin (B₃.val, (proj T).val) = dot (Y₃.val, B₃.val) * quadBiLin (B₃.val, T.val) := by
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [show quadBiLin (B₃.val, Y₃.val) = 0 by rfl]
rw [show quadBiLin (B₃.val, B₃.val) = 0 by rfl]
ring
lemma quad_self_proj (T : MSSMACC.Sols) :
quadBiLin (T.val, (proj T.1.1).val) =
(dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * quadBiLin (Y₃.val, T.val) +
(dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) * quadBiLin (B₃.val, T.val) := by
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
erw [quadSol T.1]
rw [quadBiLin.swap T.val Y₃.val, quadBiLin.swap T.val B₃.val]
ring
lemma quad_proj (T : MSSMACC.Sols) :
quadBiLin ((proj T.1.1).val, (proj T.1.1).val) = 2 * (dot (Y₃.val, B₃.val)) *
((dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * quadBiLin (Y₃.val, T.val) +
(dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) * quadBiLin (B₃.val, T.val) ) := by
nth_rewrite 1 [proj_val]
repeat rw [quadBiLin.map_add₁]
repeat rw [quadBiLin.map_smul₁]
rw [quad_Y₃_proj, quad_B₃_proj, quad_self_proj]
ring
lemma cube_proj_proj_Y₃ (T : MSSMACC.LinSols) :
cubeTriLin ((proj T).val, (proj T).val, Y₃.val) =
(dot (Y₃.val, B₃.val))^2 * cubeTriLin (T.val, T.val, Y₃.val):= by
rw [proj_val]
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
erw [lineY₃B₃_doublePoint]
rw [cubeTriLin.map_add₂]
rw [cubeTriLin.swap₂]
rw [cubeTriLin.map_add₁, cubeTriLin.map_smul₁, cubeTriLin.map_smul₃]
rw [doublePoint_Y₃_Y₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₃, cubeTriLin.swap₁]
rw [doublePoint_Y₃_B₃]
rw [cubeTriLin.map_add₂]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.swap₁, cubeTriLin.swap₂]
rw [doublePoint_Y₃_Y₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, cubeTriLin.swap₁]
rw [doublePoint_Y₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
ring
lemma cube_proj_proj_B₃ (T : MSSMACC.LinSols) :
cubeTriLin ((proj T).val, (proj T).val, B₃.val) =
(dot (Y₃.val, B₃.val))^2 * cubeTriLin (T.val, T.val, B₃.val):= by
rw [proj_val]
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
erw [lineY₃B₃_doublePoint]
rw [cubeTriLin.map_add₂, cubeTriLin.swap₂, cubeTriLin.map_add₁, cubeTriLin.map_smul₁,
cubeTriLin.map_smul₃, doublePoint_Y₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₃, cubeTriLin.swap₁, doublePoint_B₃_B₃]
rw [cubeTriLin.map_add₂, cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, doublePoint_Y₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.swap₁, cubeTriLin.swap₂,
cubeTriLin.swap₁, doublePoint_B₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
ring
lemma cube_proj_proj_self (T : MSSMACC.Sols) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, T.val) =
2 * dot (Y₃.val, B₃.val) *
((dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * cubeTriLin (T.val, T.val, Y₃.val) +
( dot (Y₃.val, T.val)- 2 * dot (B₃.val, T.val)) * cubeTriLin (T.val, T.val, B₃.val)) := by
rw [proj_val]
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
erw [lineY₃B₃_doublePoint]
repeat rw [cubeTriLin.map_add₁]
repeat rw [cubeTriLin.map_smul₁]
repeat rw [cubeTriLin.map_add₂]
repeat rw [cubeTriLin.map_smul₂]
erw [T.cubicSol]
rw [cubeTriLin.swap₁ Y₃.val T.val T.val, cubeTriLin.swap₂ T.val Y₃.val T.val]
rw [cubeTriLin.swap₁ B₃.val T.val T.val, cubeTriLin.swap₂ T.val B₃.val T.val]
ring
lemma cube_proj (T : MSSMACC.Sols) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, (proj T.1.1).val) =
3 * dot (Y₃.val, B₃.val) ^ 2 *
((dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * cubeTriLin (T.val, T.val, Y₃.val) +
(dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) * cubeTriLin (T.val, T.val, B₃.val)) := by
nth_rewrite 3 [proj_val]
repeat rw [cubeTriLin.map_add₃]
repeat rw [cubeTriLin.map_smul₃]
rw [cube_proj_proj_Y₃, cube_proj_proj_B₃, cube_proj_proj_self]
ring
end MSSMACC