PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpFreeAlgebra/NormalOrder.lean

576 lines
25 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
2025-02-03 11:05:43 +00:00
import HepLean.PerturbationTheory.Algebras.FieldOpFreeAlgebra.SuperCommute
import HepLean.PerturbationTheory.Koszul.KoszulSign
/-!
2025-02-03 11:05:43 +00:00
# Normal Ordering in the FieldOpFreeAlgebra
2025-01-22 06:26:28 +00:00
In the module
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
we defined the normal ordering of a list of `CrAnStates`.
2025-02-03 11:05:43 +00:00
In this module we extend the normal ordering to a linear map on `FieldOpFreeAlgebra`.
2025-01-22 06:26:28 +00:00
We derive properties of this normal ordering.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldStatistic
2025-02-03 11:05:43 +00:00
namespace FieldOpFreeAlgebra
noncomputable section
/-- The linear map on the free creation and annihlation
algebra defined as the map taking
a list of CrAnStates to the normal-ordered list of states multiplied by
the sign corresponding to the number of fermionic-fermionic
exchanges done in ordering. -/
2025-02-03 11:05:43 +00:00
def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 :=
Basis.constr ofCrAnListBasis fun φs =>
normalOrderSign φs • ofCrAnList (normalOrderList φs)
@[inherit_doc normalOrderF]
2025-02-03 11:05:43 +00:00
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓝ᶠ(" a ")" => normalOrderF a
2025-01-23 15:06:11 +00:00
lemma normalOrderF_ofCrAnList (φs : List 𝓕.CrAnStates) :
𝓝ᶠ(ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
rw [← ofListBasis_eq_ofList, normalOrderF, Basis.constr_basis]
lemma ofCrAnList_eq_normalOrderF (φs : List 𝓕.CrAnStates) :
ofCrAnList (normalOrderList φs) = normalOrderSign φs • 𝓝ᶠ(ofCrAnList φs) := by
2025-01-30 11:08:10 +00:00
rw [normalOrderF_ofCrAnList, normalOrderList, smul_smul, normalOrderSign,
Wick.koszulSign_mul_self, one_smul]
lemma normalOrderF_one : normalOrderF (𝓕 := 𝓕) 1 = 1 := by
rw [← ofCrAnList_nil, normalOrderF_ofCrAnList, normalOrderSign_nil, normalOrderList_nil,
2025-01-23 01:44:02 +01:00
ofCrAnList_nil, one_smul]
2025-02-03 11:05:43 +00:00
lemma normalOrderF_normalOrderF_mid (a b c : 𝓕.FieldOpFreeAlgebra) :
2025-02-03 05:39:48 +00:00
𝓝ᶠ(a * b * c) = 𝓝ᶠ(a * 𝓝ᶠ(b) * c) := by
2025-02-03 11:05:43 +00:00
let pc (c : 𝓕.FieldOpFreeAlgebra) (hc : c ∈ Submodule.span (Set.range ofCrAnListBasis)) :
2025-01-31 16:02:02 +00:00
Prop := 𝓝ᶠ(a * b * c) = 𝓝ᶠ(a * 𝓝ᶠ(b) * c)
change pc c (Basis.mem_span _ c)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs, rfl⟩ := hx
simp only [ofListBasis_eq_ofList, pc]
2025-02-03 11:05:43 +00:00
let pb (b : 𝓕.FieldOpFreeAlgebra) (hb : b ∈ Submodule.span (Set.range ofCrAnListBasis)) :
2025-01-31 16:02:02 +00:00
Prop := 𝓝ᶠ(a * b * ofCrAnList φs) = 𝓝ᶠ(a * 𝓝ᶠ(b) * ofCrAnList φs)
change pb b (Basis.mem_span _ b)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs', rfl⟩ := hx
simp only [ofListBasis_eq_ofList, pb]
2025-02-03 11:05:43 +00:00
let pa (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ Submodule.span (Set.range ofCrAnListBasis)) :
2025-01-31 16:02:02 +00:00
Prop := 𝓝ᶠ(a * ofCrAnList φs' * ofCrAnList φs) = 𝓝ᶠ(a * 𝓝ᶠ(ofCrAnList φs') * ofCrAnList φs)
change pa a (Basis.mem_span _ a)
apply Submodule.span_induction
· intro x hx
obtain ⟨φs'', rfl⟩ := hx
simp only [ofListBasis_eq_ofList, pa]
rw [normalOrderF_ofCrAnList]
simp only [← ofCrAnList_append, Algebra.mul_smul_comm,
Algebra.smul_mul_assoc, map_smul]
rw [normalOrderF_ofCrAnList, normalOrderF_ofCrAnList, smul_smul]
congr 1
· simp only [normalOrderSign, normalOrderList]
rw [Wick.koszulSign_of_append_eq_insertionSort, mul_comm]
· congr 1
simp only [normalOrderList]
rw [HepLean.List.insertionSort_append_insertionSort_append]
· simp [pa]
· intro x y hx hy h1 h2
simp_all [pa, add_mul]
· intro x hx h
simp_all [pa]
· simp [pb]
· intro x y hx hy h1 h2
simp_all [pb, mul_add, add_mul]
· intro x hx h
simp_all [pb]
· simp [pc]
· intro x y hx hy h1 h2
simp_all [pc, mul_add]
· intro x hx h hp
simp_all [pc]
2025-02-03 11:05:43 +00:00
lemma normalOrderF_normalOrderF_right (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a * b) = 𝓝ᶠ(a * 𝓝ᶠ(b)) := by
2025-01-31 16:02:02 +00:00
trans 𝓝ᶠ(a * b * 1)
· simp
· rw [normalOrderF_normalOrderF_mid]
simp
2025-02-03 11:05:43 +00:00
lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a * b) = 𝓝ᶠ(𝓝ᶠ(a) * b) := by
2025-01-31 16:02:02 +00:00
trans 𝓝ᶠ(1 * a * b)
· simp
· rw [normalOrderF_normalOrderF_mid]
simp
2025-01-22 06:26:28 +00:00
/-!
## Normal ordering with a creation operator on the left or annihilation on the right
-/
lemma normalOrderF_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
𝓝ᶠ(ofCrAnList (φ :: φs)) = ofCrAnState φ * 𝓝ᶠ(ofCrAnList φs) := by
2025-01-30 11:08:10 +00:00
rw [normalOrderF_ofCrAnList, normalOrderSign_cons_create φ hφ,
normalOrderList_cons_create φ hφ φs]
rw [ofCrAnList_cons, normalOrderF_ofCrAnList, mul_smul_comm]
lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
2025-02-03 11:05:43 +00:00
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (a : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(ofCrAnState φ * a) = ofCrAnState φ * 𝓝ᶠ(a) := by
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnState φ)) a =
(mulLinearMap (ofCrAnState φ) ∘ₗ normalOrderF) a
2025-01-23 01:44:02 +01:00
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply]
rw [← ofCrAnList_cons, normalOrderF_ofCrAnList_cons_create φ hφ]
lemma normalOrderF_ofCrAnList_append_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
𝓝ᶠ(ofCrAnList (φs ++ [φ])) = 𝓝ᶠ(ofCrAnList φs) * ofCrAnState φ := by
rw [normalOrderF_ofCrAnList, normalOrderSign_append_annihlate φ hφ φs,
2025-01-23 01:44:02 +01:00
normalOrderList_append_annihilate φ hφ φs, ofCrAnList_append, ofCrAnList_singleton,
normalOrderF_ofCrAnList, smul_mul_assoc]
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
2025-02-03 11:05:43 +00:00
(a : FieldOpFreeAlgebra 𝓕) : 𝓝ᶠ(a * ofCrAnState φ) = 𝓝ᶠ(a) * ofCrAnState φ := by
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnState φ)) a =
(mulLinearMap.flip (ofCrAnState φ) ∘ₗ normalOrderF) a
2025-01-23 01:44:02 +01:00
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk]
2025-01-23 01:44:02 +01:00
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton,
normalOrderF_ofCrAnList_append_annihilate φ hφ]
2025-02-03 11:05:43 +00:00
lemma normalOrderF_crPartF_mul (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
2025-01-30 06:24:17 +00:00
𝓝ᶠ(crPartF φ * a) =
crPartF φ * 𝓝ᶠ(a) := by
2025-01-22 06:26:28 +00:00
match φ with
2025-01-23 10:46:50 +00:00
| .inAsymp φ =>
2025-01-30 06:24:17 +00:00
rw [crPartF]
exact normalOrderF_create_mul ⟨States.inAsymp φ, ()⟩ rfl a
2025-01-22 06:26:28 +00:00
| .position φ =>
2025-01-30 06:24:17 +00:00
rw [crPartF]
exact normalOrderF_create_mul _ rfl _
2025-01-23 14:22:25 +00:00
| .outAsymp φ => simp
2025-01-22 06:26:28 +00:00
2025-02-03 11:05:43 +00:00
lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
2025-01-30 06:24:17 +00:00
𝓝ᶠ(a * anPartF φ) =
𝓝ᶠ(a) * anPartF φ := by
2025-01-22 06:26:28 +00:00
match φ with
2025-01-23 14:22:25 +00:00
| .inAsymp φ => simp
2025-01-22 06:26:28 +00:00
| .position φ =>
2025-01-30 06:24:17 +00:00
rw [anPartF]
exact normalOrderF_mul_annihilate _ rfl _
2025-01-23 10:46:50 +00:00
| .outAsymp φ =>
2025-01-30 06:24:17 +00:00
rw [anPartF]
refine normalOrderF_mul_annihilate _ rfl _
2025-01-22 06:26:28 +00:00
/-!
## Normal ordering for an adjacent creation and annihliation state
The main result of this section is `normalOrderF_superCommuteF_annihilate_create`.
2025-01-22 06:26:28 +00:00
-/
lemma normalOrderF_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
2025-01-22 06:26:28 +00:00
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
𝓝ᶠ(ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
𝓝ᶠ(ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
rw [normalOrderF_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa, ← smul_smul, ← normalOrderF_ofCrAnList]
rw [ofCrAnList_append, ofCrAnList_cons, ofCrAnList_cons]
noncomm_ring
lemma normalOrderF_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
2025-01-22 06:26:28 +00:00
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
2025-02-03 11:05:43 +00:00
(φs : List 𝓕.CrAnStates) (a : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
𝓝ᶠ(ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
(smulLinearMap _ ∘ₗ normalOrderF ∘ₗ
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
2025-01-23 01:44:02 +01:00
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate_ofCrAnList_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
2025-01-22 08:57:46 +00:00
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
2025-02-03 11:05:43 +00:00
(a b : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(a * ofCrAnState φc * ofCrAnState φa * b) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
𝓝ᶠ(a * ofCrAnState φa * ofCrAnState φc * b) := by
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnState φa * (ofCrAnState φc * b))) a
2025-01-23 01:44:02 +01:00
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) _
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
2025-01-23 01:44:02 +01:00
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1, ← mul_assoc,
normalOrderF_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
2025-01-22 06:26:28 +00:00
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
2025-02-03 11:05:43 +00:00
(a b : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(a * [ofCrAnState φc, ofCrAnState φa]ₛca * b) = 0 := by
simp only [superCommuteF_ofCrAnState_ofCrAnState, instCommGroup.eq_1, Algebra.smul_mul_assoc]
2025-01-23 01:44:02 +01:00
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc, ← mul_assoc, ← mul_assoc,
normalOrderF_swap_create_annihlate φc φa hφc hφa]
2025-01-23 01:44:02 +01:00
simp
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
2025-01-22 06:26:28 +00:00
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
2025-02-03 11:05:43 +00:00
(a b : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(a * [ofCrAnState φa, ofCrAnState φc]ₛca * b) = 0 := by
rw [superCommuteF_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
exact Or.inr (normalOrderF_superCommuteF_create_annihilate φc φa hφc hφa ..)
2025-02-03 11:05:43 +00:00
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
2025-01-30 06:24:17 +00:00
𝓝ᶠ(a * (crPartF φ) * (anPartF φ') * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
𝓝ᶠ(a * (anPartF φ') * (crPartF φ) * b) := by
match φ, φ' with
2025-01-23 14:22:25 +00:00
| _, .inAsymp φ' => simp
| .outAsymp φ, _ => simp
| .position φ, .position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
2025-01-23 01:44:02 +01:00
rfl; rfl
2025-01-23 10:46:50 +00:00
| .inAsymp φ, .outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
2025-01-23 01:44:02 +01:00
rfl; rfl
2025-01-23 10:46:50 +00:00
| .inAsymp φ, .position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
2025-01-23 01:44:02 +01:00
rfl; rfl
2025-01-23 10:46:50 +00:00
| .position φ, .outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
2025-01-23 01:44:02 +01:00
rfl; rfl
2025-01-22 06:26:28 +00:00
/-!
2025-01-30 06:24:17 +00:00
## Normal ordering for an anPartF and crPartF
2025-01-22 06:26:28 +00:00
Using the results from above.
-/
2025-02-03 11:05:43 +00:00
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
2025-01-30 06:24:17 +00:00
𝓝ᶠ(a * (anPartF φ) * (crPartF φ') * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝ᶠ(a * (crPartF φ') *
(anPartF φ) * b) := by
simp [normalOrderF_swap_crPartF_anPartF, smul_smul]
2025-02-03 11:05:43 +00:00
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * superCommuteF
2025-01-30 06:24:17 +00:00
(crPartF φ) (anPartF φ') * b) = 0 := by
match φ, φ' with
2025-01-23 14:22:25 +00:00
| _, .inAsymp φ' => simp
| .outAsymp φ', _ => simp
| .position φ, .position φ' =>
2025-01-30 06:24:17 +00:00
rw [crPartF_position, anPartF_position]
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
2025-01-23 10:46:50 +00:00
| .inAsymp φ, .outAsymp φ' =>
2025-01-30 06:24:17 +00:00
rw [crPartF_negAsymp, anPartF_posAsymp]
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
2025-01-23 10:46:50 +00:00
| .inAsymp φ, .position φ' =>
2025-01-30 06:24:17 +00:00
rw [crPartF_negAsymp, anPartF_position]
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
2025-01-23 10:46:50 +00:00
| .position φ, .outAsymp φ' =>
2025-01-30 06:24:17 +00:00
rw [crPartF_position, anPartF_posAsymp]
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
2025-02-03 11:05:43 +00:00
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * superCommuteF
2025-01-30 06:24:17 +00:00
(anPartF φ) (crPartF φ') * b) = 0 := by
match φ, φ' with
2025-01-23 14:22:25 +00:00
| .inAsymp φ', _ => simp
| _, .outAsymp φ' => simp
| .position φ, .position φ' =>
2025-01-30 06:24:17 +00:00
rw [anPartF_position, crPartF_position]
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
2025-01-23 10:46:50 +00:00
| .outAsymp φ', .inAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, crPartF_negAsymp]
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
2025-01-23 10:46:50 +00:00
| .position φ', .inAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, crPartF_negAsymp]
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
2025-01-23 10:46:50 +00:00
| .outAsymp φ, .position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, crPartF_position]
exact normalOrderF_superCommuteF_annihilate_create _ _ rfl rfl ..
2025-01-22 06:26:28 +00:00
/-!
## The normal ordering of a product of two states
-/
@[simp]
2025-01-30 06:24:17 +00:00
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
𝓝ᶠ(crPartF φ * crPartF φ') =
crPartF φ * crPartF φ' := by
rw [normalOrderF_crPartF_mul]
conv_lhs => rw [← mul_one (crPartF φ')]
rw [normalOrderF_crPartF_mul, normalOrderF_one]
2025-01-22 06:26:28 +00:00
simp
@[simp]
2025-01-30 06:24:17 +00:00
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
𝓝ᶠ(anPartF φ * anPartF φ') =
anPartF φ * anPartF φ' := by
rw [normalOrderF_mul_anPartF]
conv_lhs => rw [← one_mul (anPartF φ)]
rw [normalOrderF_mul_anPartF, normalOrderF_one]
2025-01-22 06:26:28 +00:00
simp
@[simp]
2025-01-30 06:24:17 +00:00
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
𝓝ᶠ(crPartF φ * anPartF φ') =
crPartF φ * anPartF φ' := by
rw [normalOrderF_crPartF_mul]
conv_lhs => rw [← one_mul (anPartF φ')]
rw [normalOrderF_mul_anPartF, normalOrderF_one]
2025-01-22 06:26:28 +00:00
simp
@[simp]
2025-01-30 06:24:17 +00:00
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
𝓝ᶠ(anPartF φ * crPartF φ') =
2025-01-22 06:26:28 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
(crPartF φ' * anPartF φ) := by
conv_lhs => rw [← one_mul (anPartF φ * crPartF φ')]
conv_lhs => rw [← mul_one (1 * (anPartF φ *
crPartF φ'))]
rw [← mul_assoc, normalOrderF_swap_anPartF_crPartF]
2025-01-22 06:26:28 +00:00
simp
lemma normalOrderF_ofState_mul_ofState (φ φ' : 𝓕.States) :
𝓝ᶠ(ofState φ * ofState φ') =
2025-01-30 06:24:17 +00:00
crPartF φ * crPartF φ' +
2025-01-22 06:26:28 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
(crPartF φ' * anPartF φ) +
crPartF φ * anPartF φ' +
anPartF φ * anPartF φ' := by
rw [ofState_eq_crPartF_add_anPartF, ofState_eq_crPartF_add_anPartF, mul_add, add_mul, add_mul]
simp only [map_add, normalOrderF_crPartF_mul_crPartF, normalOrderF_anPartF_mul_crPartF,
instCommGroup.eq_1, normalOrderF_crPartF_mul_anPartF, normalOrderF_anPartF_mul_anPartF]
2025-01-22 06:26:28 +00:00
abel
/-!
## Normal order with super commutors
-/
2025-01-22 10:32:39 +00:00
TODO "Split the following two lemmas up into smaller parts."
2025-01-22 06:26:28 +00:00
lemma normalOrderF_superCommuteF_ofCrAnList_create_create_ofCrAnList
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
(𝓝ᶠ(ofCrAnList φs * [ofCrAnState φc, ofCrAnState φc']ₛca * ofCrAnList φs')) =
normalOrderSign (φs ++ φc' :: φc :: φs') •
2025-01-23 15:06:11 +00:00
(ofCrAnList (createFilter φs) * [ofCrAnState φc, ofCrAnState φc']ₛca *
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
rw [superCommuteF_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
conv_lhs =>
2025-01-23 01:44:02 +01:00
lhs; rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
lhs
rw [normalOrderF_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
enter [2, 1, 2]
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
rw [← annihilateFilter_append]
conv_lhs =>
2025-01-23 01:44:02 +01:00
rhs; rhs
rw [smul_mul_assoc, Algebra.mul_smul_comm, smul_mul_assoc]
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
rhs
rw [map_smul]
rhs
rw [normalOrderF_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
enter [2, 1, 2]
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
List.append_nil, Algebra.smul_mul_assoc]
rw [← annihilateFilter_append]
conv_lhs =>
2025-01-23 01:44:02 +01:00
lhs; lhs
simp
conv_lhs =>
2025-01-23 01:44:02 +01:00
rhs; rhs; lhs
simp
rw [normalOrderSign_swap_create_create φc φc' hφc hφc']
rw [smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
conv_lhs =>
2025-01-23 01:44:02 +01:00
rhs; rhs
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
rw [← smul_mul_assoc, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
2025-01-23 01:47:25 +01:00
rw [← sub_mul, ← sub_mul, ← mul_sub, ofCrAnList_append, ofCrAnList_singleton,
ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
lemma normalOrderF_superCommuteF_ofCrAnList_annihilate_annihilate_ofCrAnList
(φa φa' : 𝓕.CrAnStates)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') =
normalOrderSign (φs ++ φa' :: φa :: φs') •
(ofCrAnList (createFilter (φs ++ φs'))
2025-01-24 05:19:04 +00:00
* ofCrAnList (annihilateFilter φs) * [ofCrAnState φa, ofCrAnState φa']ₛca
* ofCrAnList (annihilateFilter φs')) := by
rw [superCommuteF_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
conv_lhs =>
2025-01-23 01:44:02 +01:00
lhs; rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
lhs
rw [normalOrderF_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
enter [2, 1, 1]
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
rw [← createFilter_append]
conv_lhs =>
2025-01-23 01:44:02 +01:00
rhs; rhs
rw [smul_mul_assoc]
rw [Algebra.mul_smul_comm, smul_mul_assoc]
rhs
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
← ofCrAnList_append]
conv_lhs =>
rhs
rw [map_smul]
rhs
rw [normalOrderF_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
rw [createFilter_append, createFilter_append, createFilter_append,
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
enter [2, 1, 1]
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
List.append_nil, Algebra.smul_mul_assoc]
rw [← createFilter_append]
conv_lhs =>
2025-01-23 01:44:02 +01:00
lhs; lhs
simp
conv_lhs =>
2025-01-23 01:44:02 +01:00
rhs; rhs; lhs
simp
rw [normalOrderSign_swap_annihilate_annihilate φa φa' hφa hφa']
rw [smul_smul, mul_comm, ← smul_smul]
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
conv_lhs =>
2025-01-23 01:44:02 +01:00
rhs; rhs
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
rw [← Algebra.mul_smul_comm, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
rw [← mul_sub, ← sub_mul, ← mul_sub]
apply congrArg
conv_rhs => rw [mul_assoc, mul_assoc]
apply congrArg
rw [mul_assoc]
apply congrArg
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
2025-01-22 06:26:28 +00:00
/-!
2025-01-22 06:26:28 +00:00
## Super commututators involving a normal order.
2025-01-22 06:26:28 +00:00
-/
lemma ofCrAnList_superCommuteF_normalOrderF_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, 𝓝ᶠ(ofCrAnList φs')]ₛca =
ofCrAnList φs * 𝓝ᶠ(ofCrAnList φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnList φs') * ofCrAnList φs := by
simp [normalOrderF_ofCrAnList, map_smul, superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append,
smul_sub, smul_smul, mul_comm]
lemma ofCrAnList_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
ofCrAnList φs * 𝓝ᶠ(ofFieldOpListF φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnList φs := by
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
← Finset.sum_sub_distrib, map_sum]
congr
funext n
rw [ofCrAnList_superCommuteF_normalOrderF_ofCrAnList,
CrAnSection.statistics_eq_state_statistics]
2025-01-22 06:26:28 +00:00
/-!
## Multiplications with normal order written in terms of super commute.
-/
lemma ofCrAnList_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
ofCrAnList φs * 𝓝ᶠ(ofFieldOpListF φs') =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnList φs
+ [ofCrAnList φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
simp [ofCrAnList_superCommuteF_normalOrderF_ofFieldOpListF]
lemma ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnStates)
(φs' : List 𝓕.States) : ofCrAnState φ * 𝓝ᶠ(ofFieldOpListF φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnState φ
+ [ofCrAnState φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States)
(φs' : List 𝓕.States) :
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
2025-01-30 06:24:17 +00:00
rw [normalOrderF_mul_anPartF]
match φ with
2025-01-23 14:22:25 +00:00
| .inAsymp φ => simp
| .position φ => simp [ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
| .outAsymp φ => simp [ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
end
2025-02-03 11:05:43 +00:00
end FieldOpFreeAlgebra
end FieldSpecification