84 lines
2.1 KiB
Text
84 lines
2.1 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import HepLean.FeynmanDiagrams.Basic
|
|||
|
/-!
|
|||
|
# Feynman diagrams in Phi^4 theory
|
|||
|
|
|||
|
The aim of this file is to start building up the theory of Feynman diagrams in the context of
|
|||
|
Phi^4 theory.
|
|||
|
|
|||
|
|
|||
|
-/
|
|||
|
|
|||
|
|
|||
|
namespace PhiFour
|
|||
|
open CategoryTheory
|
|||
|
open FeynmanDiagram
|
|||
|
open PreFeynmanRule
|
|||
|
|
|||
|
@[simps!]
|
|||
|
def phi4PreFeynmanRules : PreFeynmanRule where
|
|||
|
/- There is only 1 type of `half-edge`. -/
|
|||
|
HalfEdgeLabel := Fin 1
|
|||
|
/- There is only 1 type of `edge`. -/
|
|||
|
EdgeLabel := Fin 1
|
|||
|
/- There are two types of `vertex`, external `0` and internal `1`. -/
|
|||
|
VertexLabel := Fin 2
|
|||
|
edgeLabelMap x :=
|
|||
|
match x with
|
|||
|
| 0 => Over.mk ![0, 0]
|
|||
|
vertexLabelMap x :=
|
|||
|
match x with
|
|||
|
| 0 => Over.mk ![0]
|
|||
|
| 1 => Over.mk ![0, 0, 0, 0]
|
|||
|
|
|||
|
instance (a : ℕ) : OfNat phi4PreFeynmanRules.EdgeLabel a where
|
|||
|
ofNat := (a : Fin _)
|
|||
|
|
|||
|
instance (a : ℕ) : OfNat phi4PreFeynmanRules.HalfEdgeLabel a where
|
|||
|
ofNat := (a : Fin _)
|
|||
|
|
|||
|
instance (a : ℕ) : OfNat phi4PreFeynmanRules.VertexLabel a where
|
|||
|
ofNat := (a : Fin _)
|
|||
|
|
|||
|
|
|||
|
instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where
|
|||
|
edgeLabelDecidable := instDecidableEqFin _
|
|||
|
vertexLabelDecidable := instDecidableEqFin _
|
|||
|
halfEdgeLabelDecidable := instDecidableEqFin _
|
|||
|
vertexMapFintype := fun v =>
|
|||
|
match v with
|
|||
|
| 0 => Fin.fintype _
|
|||
|
| 1 => Fin.fintype _
|
|||
|
edgeMapFintype := fun v =>
|
|||
|
match v with
|
|||
|
| 0 => Fin.fintype _
|
|||
|
vertexMapDecidable := fun v =>
|
|||
|
match v with
|
|||
|
| 0 => instDecidableEqFin _
|
|||
|
| 1 => instDecidableEqFin _
|
|||
|
edgeMapDecidable := fun v =>
|
|||
|
match v with
|
|||
|
| 0 => instDecidableEqFin _
|
|||
|
|
|||
|
|
|||
|
def figureEight : FeynmanDiagram phi4PreFeynmanRules :=
|
|||
|
mk' ![0, 0] ![1] ![⟨0, 0, 0⟩, ⟨0, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 0⟩] (by decide)
|
|||
|
|
|||
|
instance : IsFiniteDiagram figureEight where
|
|||
|
𝓔Fintype := Fin.fintype _
|
|||
|
𝓔DecidableEq := instDecidableEqFin _
|
|||
|
𝓥Fintype := Fin.fintype _
|
|||
|
𝓥DecidableEq := instDecidableEqFin _
|
|||
|
𝓱𝓔Fintype := Fin.fintype _
|
|||
|
𝓱𝓔DecidableEq := instDecidableEqFin _
|
|||
|
|
|||
|
#eval symmetryFactor figureEight
|
|||
|
|
|||
|
#eval Connected figureEight
|
|||
|
|
|||
|
end PhiFour
|