PhysLean/HepLean/SpaceTime/WeylFermion/Basic.lean

141 lines
6 KiB
Text
Raw Normal View History

2024-09-15 19:01:34 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Meta.Informal
/-!
# Weyl fermions
-/
/-!
## The definition of Weyl fermion vector spaces.
2024-09-17 05:23:09 -04:00
We define the vector spaces corresponding to different types of Weyl fermions.
Note: We should prevent casting between these vector spaces.
2024-09-15 19:01:34 -04:00
-/
2024-09-23 08:08:40 +00:00
namespace Fermion
informal_definition leftHandedWeyl where
2024-09-15 19:01:34 -04:00
math :≈ "The vector space ^2 carrying the fundamental representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_a."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
2024-09-23 08:08:40 +00:00
informal_definition rightHandedWeyl where
2024-09-15 19:01:34 -04:00
math :≈ "The vector space ^2 carrying the conjguate representation of SL(2,C)."
physics :≈ "A Weyl fermion with indices ψ_{dot a}."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
2024-09-23 08:08:40 +00:00
informal_definition altLeftHandedWeyl where
2024-09-15 19:01:34 -04:00
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ."
physics :≈ "A Weyl fermion with indices ψ^a."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
2024-09-23 08:08:40 +00:00
informal_definition altRightHandedWeyl where
2024-09-15 19:01:34 -04:00
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†."
physics :≈ "A Weyl fermion with indices ψ^{dot a}."
2024-09-15 19:01:34 -04:00
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
/-!
## Equivalences between Weyl fermion vector spaces.
-/
2024-09-16 07:40:15 -04:00
2024-09-23 08:08:40 +00:00
informal_definition leftHandedWeylAltEquiv where
math :≈ "The linear equiv between leftHandedWeyl and altLeftHandedWeyl given
by multiplying an element of rightHandedWeyl by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`."
deps :≈ [``leftHandedWeyl, ``altLeftHandedWeyl]
2024-09-15 19:01:34 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma leftHandedWeylAltEquiv_equivariant where
math :≈ "The linear equiv leftHandedWeylAltEquiv is equivariant with respect to the
action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``leftHandedWeylAltEquiv]
2024-09-15 19:01:34 -04:00
2024-09-23 08:08:40 +00:00
informal_definition rightHandedWeylAltEquiv where
math :≈ "The linear equiv between rightHandedWeyl and altRightHandedWeyl given
by multiplying an element of rightHandedWeyl by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
deps :≈ [``rightHandedWeyl, ``altRightHandedWeyl]
2024-09-15 19:01:34 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma rightHandedWeylAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightHandedWeylAltEquiv]
/-!
## Contraction of Weyl fermions.
-/
2024-09-23 08:08:40 +00:00
informal_definition leftAltWeylContraction where
math :≈ "The linear map from leftHandedWeyl ⊗ altLeftHandedWeyl to given by
summing over components of leftHandedWeyl and altLeftHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is ψ_a φ^a."
2024-09-23 08:08:40 +00:00
deps :≈ [``leftHandedWeyl, ``altLeftHandedWeyl]
2024-09-23 08:08:40 +00:00
informal_lemma leftAltWeylContraction_invariant where
math :≈ "The contraction leftAltWeylContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``leftAltWeylContraction]
2024-09-17 05:23:09 -04:00
2024-09-23 08:08:40 +00:00
informal_definition altLeftWeylContraction where
math :≈ "The linear map from altLeftHandedWeyl ⊗ leftHandedWeyl to given by
summing over components of altLeftHandedWeyl and leftHandedWeyl in the
2024-09-17 05:23:09 -04:00
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is φ^a ψ_a ."
2024-09-23 08:08:40 +00:00
deps :≈ [``leftHandedWeyl, ``altLeftHandedWeyl]
2024-09-17 05:23:09 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma leftAltWeylContraction_symm_altLeftWeylContraction where
math :≈ "The linear map altLeftWeylContraction is leftAltWeylContraction composed
2024-09-17 05:23:09 -04:00
with the braiding of the tensor product."
2024-09-23 08:08:40 +00:00
deps :≈ [``leftAltWeylContraction, ``altLeftWeylContraction]
2024-09-17 05:23:09 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma altLeftWeylContraction_invariant where
math :≈ "The contraction altLeftWeylContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``altLeftWeylContraction]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_definition rightAltWeylContraction where
math :≈ "The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to given by
summing over components of rightHandedWeyl and altRightHandedWeyl in the
2024-09-17 07:08:03 -04:00
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is ψ_{dot a} φ^{dot a}."
2024-09-23 08:08:40 +00:00
deps :≈ [``rightHandedWeyl, ``altRightHandedWeyl]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma rightAltWeylContraction_invariant where
math :≈ "The contraction rightAltWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightAltWeylContraction]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_definition altRightWeylContraction where
math :≈ "The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to given by
summing over components of altRightHandedWeyl and rightHandedWeyl in the
2024-09-17 07:08:03 -04:00
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^{dot a} ψ_{dot a}."
2024-09-23 08:08:40 +00:00
deps :≈ [``rightHandedWeyl, ``altRightHandedWeyl]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where
math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed
2024-09-17 07:08:03 -04:00
with the braiding of the tensor product."
2024-09-23 08:08:40 +00:00
deps :≈ [``rightAltWeylContraction, ``altRightWeylContraction]
informal_lemma altRightWeylContraction_invariant where
math :≈ "The contraction altRightWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``altRightWeylContraction]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
end Fermion