PhysLean/HepLean/Mathematics/SchurTriangulation.lean

216 lines
10 KiB
Text
Raw Normal View History

2025-01-10 01:37:14 +08:00
import Mathlib.LinearAlgebra.Eigenspace.Triangularizable
import Mathlib.LinearAlgebra.Matrix.Spectrum
open scoped InnerProductSpace
/-- `subNat' i h` subtracts `m` from `i`. This is an alternative form of `Fin.subNat`. -/
@[inline] def Fin.subNat' (i : Fin (m + n)) (h : ¬ i < m) : Fin n :=
subNat m (Fin.cast (m.add_comm n) i) (Nat.ge_of_not_lt h)
namespace Equiv
/-- An alternative form of `Equiv.sumEquivSigmaBool` where `Bool.casesOn` is replaced by `cond`. -/
def sumEquivSigmalCond : Fin m ⊕ Fin n ≃ Σ b, cond b (Fin m) (Fin n) :=
calc Fin m ⊕ Fin n
_ ≃ Fin n ⊕ Fin m := sumComm ..
_ ≃ Σ b, Bool.casesOn b (Fin n) (Fin m) := sumEquivSigmaBool ..
_ ≃ Σ b, cond b (Fin m) (Fin n) := sigmaCongrRight fun | true | false => Equiv.refl _
/-- The composition of `finSumFinEquiv` and `Equiv.sumEquivSigmalCond` used by
`LinearMap.SchurTriangulationAux.of`. -/
def finAddEquivSigmaCond : Fin (m + n) ≃ Σ b, cond b (Fin m) (Fin n) :=
finSumFinEquiv.symm.trans sumEquivSigmalCond
2025-01-10 01:37:14 +08:00
variable {i : Fin (m + n)}
theorem finAddEquivSigmaCond_true (h : i < m) : finAddEquivSigmaCond i = ⟨true, i, h⟩ :=
congrArg sumEquivSigmalCond <| finSumFinEquiv_symm_apply_castAdd ⟨i, h⟩
theorem finAddEquivSigmaCond_false (h : ¬ i < m) : finAddEquivSigmaCond i = ⟨false, i.subNat' h⟩ :=
let j : Fin n := i.subNat' h
calc finAddEquivSigmaCond i
_ = finAddEquivSigmaCond (Fin.natAdd m j) :=
suffices m + (i - m) = i from congrArg _ (Fin.ext this.symm)
Nat.add_sub_of_le (Nat.le_of_not_gt h)
_ = ⟨false, i.subNat' h⟩ := congrArg sumEquivSigmalCond <| finSumFinEquiv_symm_apply_natAdd j
end Equiv
2025-01-10 01:37:14 +08:00
instance [M : Fintype m] [N : Fintype n] (b : Bool) : Fintype (cond b m n) := b.rec N M
instance [DecidableEq m] [DecidableEq n] : DecidableEq (Σ b, cond b m n)
| ⟨true, _⟩, ⟨false, _⟩
| ⟨false, _⟩, ⟨true, _⟩ => isFalse nofun
| ⟨false, i⟩, ⟨false, j⟩
| ⟨true, i⟩, ⟨true, j⟩ => if h : i = j then isTrue (Sigma.eq rfl h) else isFalse fun | rfl => h rfl
namespace Matrix
abbrev IsUpperTriangular [LT n] [CommRing R] (A : Matrix n n R) := A.BlockTriangular id
abbrev UpperTriangular (n R) [LT n] [CommRing R] := { A : Matrix n n R // A.IsUpperTriangular }
end Matrix
namespace LinearMap
variable [RCLike 𝕜]
section
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
section
variable [FiniteDimensional 𝕜 E] [Fintype n] [DecidableEq n]
theorem toMatrixOrthonormal_apply_apply (b : OrthonormalBasis n 𝕜 E) (f : Module.End 𝕜 E) (i j : n)
: toMatrixOrthonormal b f i j = ⟪b i, f (b j)⟫_𝕜 :=
calc
_ = b.repr (f (b j)) i := f.toMatrix_apply ..
_ = ⟪b i, f (b j)⟫_𝕜 := b.repr_apply_apply ..
theorem toMatrixOrthonormal_reindex [Fintype m] [DecidableEq m]
(b : OrthonormalBasis m 𝕜 E) (e : m ≃ n) (f : Module.End 𝕜 E)
: toMatrixOrthonormal (b.reindex e) f = Matrix.reindex e e (toMatrixOrthonormal b f) :=
Matrix.ext fun i j => let c := b.toBasis
show toMatrix (b.reindex e).toBasis (b.reindex e).toBasis f i j = toMatrix c c f (e.symm i) (e.symm j) by
rw [b.reindex_toBasis, f.toMatrix_apply, c.repr_reindex_apply, c.reindex_apply, f.toMatrix_apply]
end
structure SchurTriangulationAux (f : Module.End 𝕜 E) where
dim :
hdim : Module.finrank 𝕜 E = dim
basis : OrthonormalBasis (Fin dim) 𝕜 E
upperTriangular : (toMatrix basis.toBasis basis.toBasis f).IsUpperTriangular
end
variable [IsAlgClosed 𝕜]
protected noncomputable def SchurTriangulationAux.of
[NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (f : Module.End 𝕜 E)
: SchurTriangulationAux f :=
haveI : Decidable (Nontrivial E) := Classical.propDecidable _
if hE : Nontrivial E then
let μ : f.Eigenvalues := default
let V : Submodule 𝕜 E := f.eigenspace μ
let W : Submodule 𝕜 E := Vᗮ
let m := Module.finrank 𝕜 V
have hdim : m + Module.finrank 𝕜 W = Module.finrank 𝕜 E := V.finrank_add_finrank_orthogonal
let g : Module.End 𝕜 W := orthogonalProjection W ∘ₗ f.domRestrict W
let ⟨n, hn, bW, hg⟩ := SchurTriangulationAux.of g
have bV : OrthonormalBasis (Fin m) 𝕜 V := stdOrthonormalBasis 𝕜 V
have hV := V.orthogonalFamily_self
have int : DirectSum.IsInternal (cond · V W) :=
suffices ⨆ b, cond b V W = from (hV.decomposition this).isInternal _
(sup_eq_iSup V W).symm.trans Submodule.sup_orthogonal_of_completeSpace
let B (b : Bool) : OrthonormalBasis (cond b (Fin m) (Fin n)) 𝕜 ↥(cond b V W) := b.rec bW bV
let bE : OrthonormalBasis (Σ b, cond b (Fin m) (Fin n)) 𝕜 E := int.collectedOrthonormalBasis hV B
let e := Equiv.finAddEquivSigmaCond
let basis := bE.reindex e.symm
2025-01-10 01:37:14 +08:00
{
basis
dim := m + n
hdim := hn ▸ hdim.symm
upperTriangular := fun i j (hji : j < i) => show toMatrixOrthonormal basis f i j = 0 from
have hB : ∀ s, bE s = B s.1 s.2
| ⟨true, i⟩ => show bE ⟨true, i⟩ = bV i from
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨true, i⟩ = bV i by simp
| ⟨false, j⟩ => show bE ⟨false, j⟩ = bW j from
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨false, j⟩ = bW j by simp
have hf {bi i' bj j'} (hi : e i = ⟨bi, i'⟩) (hj : e j = ⟨bj, j'⟩) :=
2025-01-10 01:37:14 +08:00
calc toMatrixOrthonormal basis f i j
_ = toMatrixOrthonormal bE f (e i) (e j) := by rw [f.toMatrixOrthonormal_reindex] ; rfl
_ = ⟪bE (e i), f (bE (e j))⟫_𝕜 := f.toMatrixOrthonormal_apply_apply ..
2025-01-10 01:37:14 +08:00
_ = ⟪(B bi i' : E), f (B bj j')⟫_𝕜 := by rw [hB, hB, hi, hj]
if hj : j < m then
let j' : Fin m := ⟨j, hj⟩
have hf' {bi i'} (hi : e i = ⟨bi, i'⟩) (h0 : ⟪(B bi i' : E), bV j'⟫_𝕜 = 0) :=
2025-01-10 01:37:14 +08:00
calc toMatrixOrthonormal basis f i j
_ = ⟪(B bi i' : E), f _⟫_𝕜 := hf hi (Equiv.finAddEquivSigmaCond_true hj)
2025-01-10 01:37:14 +08:00
_ = ⟪_, f (bV j')⟫_𝕜 := rfl
_ = 0 :=
suffices f (bV j') = μ.val • bV j' by rw [this, inner_smul_right, h0, mul_zero]
suffices f.HasEigenvector μ (bV j') from this.apply_eq_smul
⟨(bV j').property, fun h => bV.toBasis.ne_zero j' (Subtype.ext h)⟩
if hi : i < m then
let i' : Fin m := ⟨i, hi⟩
suffices ⟪(bV i' : E), bV j'⟫_𝕜 = 0 from hf' (Equiv.finAddEquivSigmaCond_true hi) this
2025-01-10 01:37:14 +08:00
bV.orthonormal.right (Fin.ne_of_gt hji)
else
let i' : Fin n := i.subNat' hi
suffices ⟪(bW i' : E), bV j'⟫_𝕜 = 0 from hf' (Equiv.finAddEquivSigmaCond_false hi) this
2025-01-10 01:37:14 +08:00
V.inner_left_of_mem_orthogonal (bV j').property (bW i').property
else
have hi (h : i < m) : False := hj (Nat.lt_trans hji h)
let i' : Fin n := i.subNat' hi
let j' : Fin n := j.subNat' hj
2025-01-10 01:37:14 +08:00
calc toMatrixOrthonormal basis f i j
_ = ⟪(bW i' : E), f (bW j')⟫_𝕜 :=
hf (Equiv.finAddEquivSigmaCond_false hi) (Equiv.finAddEquivSigmaCond_false hj)
2025-01-10 01:37:14 +08:00
_ = ⟪bW i', g (bW j')⟫_𝕜 := by simp [g]
_ = toMatrixOrthonormal bW g i' j' := (g.toMatrixOrthonormal_apply_apply ..).symm
_ = 0 := hg (Nat.sub_lt_sub_right (Nat.le_of_not_lt hj) hji)
}
else
haveI : Subsingleton E := not_nontrivial_iff_subsingleton.mp hE
{
dim := 0
hdim := Module.finrank_zero_of_subsingleton
basis := (Basis.empty E).toOrthonormalBasis ⟨nofun, nofun⟩
upperTriangular := nofun
}
termination_by Module.finrank 𝕜 E
decreasing_by exact
calc Module.finrank 𝕜 W
_ < m + Module.finrank 𝕜 W := Nat.lt_add_of_pos_left (Submodule.one_le_finrank_iff.mpr μ.property)
_ = Module.finrank 𝕜 E := hdim
end LinearMap
namespace Matrix
/- IMPORTANT: existing `DecidableEq n` should take precedence over `LinearOrder.decidableEq`,
a.k.a., `instDecidableEq_mathlib`. -/
variable [RCLike 𝕜] [IsAlgClosed 𝕜] [Fintype n] [DecidableEq n] [LinearOrder n] (A : Matrix n n 𝕜)
noncomputable def schurTriangulationAux : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) × UpperTriangular n 𝕜 :=
let f := toEuclideanLin A
let ⟨d, hd, b, hut⟩ := LinearMap.SchurTriangulationAux.of f
let e : Fin d ≃o n := Fintype.orderIsoFinOfCardEq n (finrank_euclideanSpace.symm.trans hd)
let b' := b.reindex e
let B := LinearMap.toMatrixOrthonormal b' f
suffices B.IsUpperTriangular from ⟨b', B, this⟩
fun i j (hji : j < i) =>
calc LinearMap.toMatrixOrthonormal b' f i j
_ = LinearMap.toMatrixOrthonormal b f (e.symm i) (e.symm j) := by rw [f.toMatrixOrthonormal_reindex] ; rfl
_ = 0 := hut (e.symm.lt_iff_lt.mpr hji)
noncomputable def schurTriangulationBasis : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) :=
A.schurTriangulationAux.1
noncomputable def schurTriangulationUnitary : unitaryGroup n 𝕜 where
val := (EuclideanSpace.basisFun n 𝕜).toBasis.toMatrix A.schurTriangulationBasis
property := OrthonormalBasis.toMatrix_orthonormalBasis_mem_unitary ..
noncomputable def schurTriangulation : UpperTriangular n 𝕜 :=
A.schurTriangulationAux.2
/-- **Schur triangulation**, **Schur decomposition** for matrices over an algebraically closed
field. In particular, a complex matrix can be converted to upper-triangular form by a change of
basis. In other words, any complex matrix is unitarily similar to an upper triangular matrix. -/
theorem schur_triangulation
: A = A.schurTriangulationUnitary * A.schurTriangulation * star A.schurTriangulationUnitary :=
let U := A.schurTriangulationUnitary
have h : U * A.schurTriangulation.val = A * U :=
let b := A.schurTriangulationBasis.toBasis
let c := (EuclideanSpace.basisFun n 𝕜).toBasis
calc c.toMatrix b * LinearMap.toMatrix b b (toEuclideanLin A)
_ = LinearMap.toMatrix c c (toEuclideanLin A) * c.toMatrix b := by simp
_ = LinearMap.toMatrix c c (toLin c c A) * U := rfl
_ = A * U := by simp
calc A
_ = A * U * star U := by simp [mul_assoc]
_ = U * A.schurTriangulation * star U := by rw [←h]
end Matrix