PhysLean/HepLean/SpaceTime/LorentzVector/Complex/Basic.lean

140 lines
5.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Analysis.InnerProductSpace.PiL2
import HepLean.SpaceTime.SL2C.Basic
import HepLean.SpaceTime.LorentzVector.Modules
import HepLean.Meta.Informal
import Mathlib.RepresentationTheory.Rep
2024-10-16 10:39:11 +00:00
import HepLean.SpaceTime.PauliMatrices.SelfAdjoint
/-!
# Complex Lorentz vectors
We define complex Lorentz vectors in 4d space-time as representations of SL(2, C).
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
namespace Lorentz
/-- The representation of `SL(2, )` on complex vectors corresponding to contravariant
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
def complexContr : Rep SL(2, ) := Rep.of ContrModule.SL2CRep
/-- The representation of `SL(2, )` on complex vectors corresponding to contravariant
Lorentz vectors. In index notation these have a down index `ψⁱ`. -/
def complexCo : Rep SL(2, ) := Rep.of CoModule.SL2CRep
/-- The standard basis of complex contravariant Lorentz vectors. -/
def complexContrBasis : Basis (Fin 1 ⊕ Fin 3) complexContr := Basis.ofEquivFun
(Equiv.linearEquiv ContrModule.toFin13Fun)
/-- The standard basis of complex contravariant Lorentz vectors indexed by `Fin 4`. -/
def complexContrBasisFin4 : Basis (Fin 4) complexContr :=
Basis.reindex complexContrBasis finSumFinEquiv
@[simp]
lemma complexContrBasis_ρ_apply (M : SL(2,)) (i j : Fin 1 ⊕ Fin 3) :
(LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M) i j =
(LorentzGroup.toComplex (SL2C.toLorentzGroup M)) i j := by
rw [LinearMap.toMatrix_apply]
simp only [complexContrBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change (((LorentzGroup.toComplex (SL2C.toLorentzGroup M))) *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
2024-10-16 10:39:11 +00:00
lemma complexContrBasis_ρ_val (M : SL(2,)) (v : complexContr) :
((complexContr.ρ M) v).val =
LorentzGroup.toComplex (SL2C.toLorentzGroup M) *ᵥ v.val := by
rfl
/-- The standard basis of complex covariant Lorentz vectors. -/
def complexCoBasis : Basis (Fin 1 ⊕ Fin 3) complexCo := Basis.ofEquivFun
(Equiv.linearEquiv CoModule.toFin13Fun)
/-- The standard basis of complex covariant Lorentz vectors indexed by `Fin 4`. -/
def complexCoBasisFin4 : Basis (Fin 4) complexCo :=
Basis.reindex complexCoBasis finSumFinEquiv
@[simp]
lemma complexCoBasis_ρ_apply (M : SL(2,)) (i j : Fin 1 ⊕ Fin 3) :
(LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M) i j =
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ i j := by
rw [LinearMap.toMatrix_apply]
simp only [complexCoBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
2024-10-16 10:39:11 +00:00
/-!
## Relation to real
-/
2024-10-16 10:57:46 +00:00
/-- The semilinear map including real Lorentz vectors into complex contravariant
lorentz vectors. -/
2024-10-16 10:39:11 +00:00
def inclCongrRealLorentz : LorentzVector 3 →ₛₗ[Complex.ofReal] complexContr where
toFun v := {val := ofReal ∘ v}
map_add' x y := by
apply Lorentz.ContrModule.ext
rw [Lorentz.ContrModule.val_add]
funext i
simp only [Function.comp_apply, ofReal_eq_coe, Pi.add_apply]
change ofReal (x i + y i) = _
simp only [ofReal_eq_coe, ofReal_add]
map_smul' c x := by
apply Lorentz.ContrModule.ext
rw [Lorentz.ContrModule.val_smul]
funext i
simp only [Function.comp_apply, ofReal_eq_coe, Pi.smul_apply]
change ofReal (c • x i) = _
simp only [smul_eq_mul, ofReal_eq_coe, ofReal_mul]
lemma inclCongrRealLorentz_val (v : LorentzVector 3) :
(inclCongrRealLorentz v).val = ofReal ∘ v := rfl
lemma complexContrBasis_of_real (i : Fin 1 ⊕ Fin 3) :
(complexContrBasis i) = inclCongrRealLorentz (LorentzVector.stdBasis i) := by
apply Lorentz.ContrModule.ext
2024-10-16 11:09:52 +00:00
simp only [complexContrBasis, Basis.coe_ofEquivFun, inclCongrRealLorentz, LorentzVector.stdBasis,
LinearMap.coe_mk, AddHom.coe_mk]
2024-10-16 10:39:11 +00:00
ext j
2024-10-16 10:57:46 +00:00
simp only [Function.comp_apply, ofReal_eq_coe]
2024-10-16 10:39:11 +00:00
erw [Pi.basisFun_apply]
change (Pi.single i 1) j = _
exact Eq.symm (Pi.apply_single (fun _ => ofReal') (congrFun rfl) i 1 j)
lemma inclCongrRealLorentz_ρ (M : SL(2, )) (v : LorentzVector 3) :
(complexContr.ρ M) (inclCongrRealLorentz v) =
inclCongrRealLorentz (SL2C.repLorentzVector M v) := by
apply Lorentz.ContrModule.ext
rw [complexContrBasis_ρ_val, inclCongrRealLorentz_val, inclCongrRealLorentz_val]
rw [LorentzGroup.toComplex_mulVec_ofReal]
apply congrArg
2024-10-16 10:57:46 +00:00
simp only [SL2C.toLorentzGroup_apply_coe]
2024-10-16 10:39:11 +00:00
rw [SL2C.repLorentzVector_apply_eq_mulVec]
rfl
lemma SL2CRep_ρ_basis (M : SL(2, )) (i : Fin 1 ⊕ Fin 3) :
(complexContr.ρ M) (complexContrBasis i) =
∑ j, (SL2C.toLorentzGroup M).1 j i •
complexContrBasis j := by
rw [complexContrBasis_of_real, inclCongrRealLorentz_ρ, SL2C.repLorentzVector_stdBasis, map_sum]
apply congrArg
funext j
simp only [LinearMap.map_smulₛₗ, ofReal_eq_coe, coe_smul]
rw [complexContrBasis_of_real]
end Lorentz
end