2024-04-18 10:50:21 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2024-06-25 07:06:32 -04:00
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Basic
|
2024-04-18 10:50:21 -04:00
|
|
|
|
/-!
|
|
|
|
|
# The Pure U(1) case with 3 fermion
|
|
|
|
|
|
|
|
|
|
We show that S is a solution only if one of its charges is zero.
|
|
|
|
|
We define a surjective map from `LinSols` with a charge equal to zero to `Sols`.
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
universe v u
|
|
|
|
|
|
|
|
|
|
open Nat
|
2024-07-12 11:23:02 -04:00
|
|
|
|
open Finset
|
2024-04-18 10:50:21 -04:00
|
|
|
|
|
|
|
|
|
namespace PureU1
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
namespace Three
|
|
|
|
|
|
|
|
|
|
lemma cube_for_linSol' (S : (PureU1 3).LinSols) :
|
|
|
|
|
3 * S.val (0 : Fin 3) * S.val (1 : Fin 3) * S.val (2 : Fin 3) = 0 ↔
|
|
|
|
|
(PureU1 3).cubicACC S.val = 0 := by
|
|
|
|
|
have hL := pureU1_linear S
|
|
|
|
|
simp at hL
|
|
|
|
|
rw [Fin.sum_univ_three] at hL
|
|
|
|
|
change _ ↔ accCube _ _ = _
|
|
|
|
|
rw [accCube_explicit, Fin.sum_univ_three]
|
|
|
|
|
rw [show S.val (0 : Fin 3) = - (S.val (1 : Fin 3) + S.val (2 : Fin 3)) by
|
|
|
|
|
linear_combination hL]
|
|
|
|
|
ring_nf
|
|
|
|
|
|
|
|
|
|
lemma cube_for_linSol (S : (PureU1 3).LinSols) :
|
|
|
|
|
(S.val (0 : Fin 3) = 0 ∨ S.val (1 : Fin 3) = 0 ∨ S.val (2 : Fin 3) = 0) ↔
|
|
|
|
|
(PureU1 3).cubicACC S.val = 0 := by
|
|
|
|
|
rw [← cube_for_linSol']
|
|
|
|
|
simp only [Fin.isValue, _root_.mul_eq_zero, OfNat.ofNat_ne_zero, false_or]
|
2024-06-13 16:49:01 -04:00
|
|
|
|
exact Iff.symm or_assoc
|
2024-04-18 10:50:21 -04:00
|
|
|
|
|
|
|
|
|
lemma three_sol_zero (S : (PureU1 3).Sols) : S.val (0 : Fin 3) = 0 ∨ S.val (1 : Fin 3) = 0
|
|
|
|
|
∨ S.val (2 : Fin 3) = 0 := (cube_for_linSol S.1.1).mpr S.cubicSol
|
|
|
|
|
|
|
|
|
|
/-- Given a `LinSol` with a charge equal to zero a `Sol`.-/
|
|
|
|
|
def solOfLinear (S : (PureU1 3).LinSols)
|
|
|
|
|
(hS : S.val (0 : Fin 3) = 0 ∨ S.val (1 : Fin 3) = 0 ∨ S.val (2 : Fin 3) = 0) :
|
|
|
|
|
(PureU1 3).Sols :=
|
|
|
|
|
⟨⟨S, by intro i; simp at i; exact Fin.elim0 i⟩,
|
|
|
|
|
(cube_for_linSol S).mp hS⟩
|
|
|
|
|
|
|
|
|
|
theorem solOfLinear_surjects (S : (PureU1 3).Sols) :
|
|
|
|
|
∃ (T : (PureU1 3).LinSols) (hT : T.val (0 : Fin 3) = 0 ∨ T.val (1 : Fin 3) = 0
|
|
|
|
|
∨ T.val (2 : Fin 3) = 0), solOfLinear T hT = S := by
|
|
|
|
|
use S.1.1
|
|
|
|
|
use (three_sol_zero S)
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
end Three
|
|
|
|
|
|
|
|
|
|
end PureU1
|