PhysLean/HepLean/AnomalyCancellation/SMNu/Basic.lean

367 lines
12 KiB
Text
Raw Normal View History

2024-04-18 08:40:46 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Tactic.FinCases
import Mathlib.Algebra.Module.Basic
import Mathlib.Tactic.Ring
import Mathlib.Algebra.GroupWithZero.Units.Lemmas
import HepLean.AnomalyCancellation.Basic
import Mathlib.Algebra.BigOperators.Fin
import Mathlib.Logic.Equiv.Fin
/-!
# Anomaly cancellation conditions for n family SM.
-/
universe v u
open Nat
open BigOperators
/-- The vector space of charges corresponding to the SM fermions with RHN. -/
@[simps!]
def SMνCharges (n : ) : ACCSystemCharges := ACCSystemChargesMk (6 * n)
/-- The vector spaces of charges of one species of fermions in the SM. -/
@[simps!]
def SMνSpecies (n : ) : ACCSystemCharges := ACCSystemChargesMk n
namespace SMνCharges
2024-07-12 11:23:02 -04:00
variable {n : }
2024-04-18 08:40:46 -04:00
/-- An equivalence between `(SMνCharges n).charges` and `(Fin 6 → Fin n → )`
splitting the charges into species.-/
@[simps!]
def toSpeciesEquiv : (SMνCharges n).Charges ≃ (Fin 6 → Fin n → ) :=
2024-04-18 08:40:46 -04:00
((Equiv.curry _ _ _).symm.trans ((@finProdFinEquiv 6 n).arrowCongr (Equiv.refl ))).symm
/-- Given an `i ∈ Fin 6`, the projection of charges onto a given species. -/
@[simps!]
def toSpecies (i : Fin 6) : (SMνCharges n).Charges →ₗ[] (SMνSpecies n).Charges where
2024-04-18 08:40:46 -04:00
toFun S := toSpeciesEquiv S i
map_add' _ _ := by aesop
map_smul' _ _ := by aesop
lemma charges_eq_toSpecies_eq (S T : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
S = T ↔ ∀ i, toSpecies i S = toSpecies i T := by
apply Iff.intro
intro h
rw [h]
2024-04-18 08:47:45 -04:00
simp only [forall_const]
2024-04-18 08:40:46 -04:00
intro h
apply toSpeciesEquiv.injective
funext i
exact h i
2024-07-12 11:23:02 -04:00
lemma toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6 → Fin n → ) ) :
2024-04-18 08:40:46 -04:00
(toSpecies i) (toSpeciesEquiv.symm f) = f i := by
change (toSpeciesEquiv ∘ toSpeciesEquiv.symm ) _ i = f i
simp
2024-07-12 11:23:02 -04:00
lemma toSpecies_one (S : (SMνCharges 1).Charges) (j : Fin 6) :
2024-04-18 08:40:46 -04:00
toSpecies j S ⟨0, by simp⟩ = S j := by
match j with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
| 4 => rfl
| 5 => rfl
/-- The `Q` charges as a map `Fin n → `. -/
abbrev Q := @toSpecies n 0
/-- The `U` charges as a map `Fin n → `. -/
abbrev U := @toSpecies n 1
/-- The `D` charges as a map `Fin n → `. -/
abbrev D := @toSpecies n 2
/-- The `L` charges as a map `Fin n → `. -/
abbrev L := @toSpecies n 3
/-- The `E` charges as a map `Fin n → `. -/
abbrev E := @toSpecies n 4
/-- The `N` charges as a map `Fin n → `. -/
abbrev N := @toSpecies n 5
end SMνCharges
namespace SMνACCs
open SMνCharges
2024-07-12 11:23:02 -04:00
variable {n : }
2024-04-18 08:40:46 -04:00
/-- The gravitational anomaly equation. -/
@[simp]
def accGrav : (SMνCharges n).Charges →ₗ[] where
2024-04-18 08:40:46 -04:00
toFun S := ∑ i, (6 * Q S i + 3 * U S i + 3 * D S i + 2 * L S i + E S i + N S i)
map_add' S T := by
simp only
repeat rw [map_add]
2024-07-12 11:23:02 -04:00
simp [Pi.add_apply, mul_add]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accGrav_decomp (S : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
accGrav S = 6 * ∑ i, Q S i + 3 * ∑ i, U S i + 3 * ∑ i, D S i + 2 * ∑ i, L S i + ∑ i, E S i +
∑ i, N S i := by
2024-04-18 08:47:45 -04:00
simp only [accGrav, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
AddHom.coe_mk]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- Extensionality lemma for `accGrav`. -/
lemma accGrav_ext {S T : (SMνCharges n).Charges}
2024-07-12 11:23:02 -04:00
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
2024-04-18 08:40:46 -04:00
accGrav S = accGrav T := by
rw [accGrav_decomp, accGrav_decomp]
repeat erw [hj]
/-- The `SU(2)` anomaly equation. -/
@[simp]
def accSU2 : (SMνCharges n).Charges →ₗ[] where
2024-04-18 08:40:46 -04:00
toFun S := ∑ i, (3 * Q S i + L S i)
map_add' S T := by
simp only
repeat rw [map_add]
2024-07-12 11:23:02 -04:00
simp [Pi.add_apply, mul_add]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accSU2_decomp (S : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
accSU2 S = 3 * ∑ i, Q S i + ∑ i, L S i := by
2024-04-18 08:47:45 -04:00
simp only [accSU2, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
AddHom.coe_mk]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- Extensionality lemma for `accSU2`. -/
lemma accSU2_ext {S T : (SMνCharges n).Charges}
2024-07-12 11:23:02 -04:00
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
2024-04-18 08:40:46 -04:00
accSU2 S = accSU2 T := by
rw [accSU2_decomp, accSU2_decomp]
repeat erw [hj]
/-- The `SU(3)` anomaly equations. -/
@[simp]
def accSU3 : (SMνCharges n).Charges →ₗ[] where
2024-04-18 08:40:46 -04:00
toFun S := ∑ i, (2 * Q S i + U S i + D S i)
map_add' S T := by
simp only
repeat rw [map_add]
2024-07-12 11:23:02 -04:00
simp [ Pi.add_apply, mul_add]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accSU3_decomp (S : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
accSU3 S = 2 * ∑ i, Q S i + ∑ i, U S i + ∑ i, D S i := by
2024-04-18 08:47:45 -04:00
simp only [accSU3, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
AddHom.coe_mk]
2024-04-18 08:40:46 -04:00
repeat rw [Finset.sum_add_distrib]
repeat rw [← Finset.mul_sum]
/-- Extensionality lemma for `accSU3`. -/
lemma accSU3_ext {S T : (SMνCharges n).Charges}
2024-07-12 11:23:02 -04:00
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
2024-04-18 08:40:46 -04:00
accSU3 S = accSU3 T := by
rw [accSU3_decomp, accSU3_decomp]
repeat rw [hj]
/-- The `Y²` anomaly equation. -/
@[simp]
def accYY : (SMνCharges n).Charges →ₗ[] where
2024-04-18 08:40:46 -04:00
toFun S := ∑ i, (Q S i + 8 * U S i + 2 * D S i + 3 * L S i
+ 6 * E S i)
map_add' S T := by
simp only
repeat rw [map_add]
2024-07-12 11:23:02 -04:00
simp [Pi.add_apply, mul_add]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accYY_decomp (S : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
accYY S = ∑ i, Q S i + 8 * ∑ i, U S i + 2 * ∑ i, D S i + 3 * ∑ i, L S i + 6 * ∑ i, E S i := by
2024-04-18 08:47:45 -04:00
simp only [accYY, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
AddHom.coe_mk]
2024-04-18 08:40:46 -04:00
repeat rw [Finset.sum_add_distrib]
repeat rw [← Finset.mul_sum]
/-- Extensionality lemma for `accYY`. -/
lemma accYY_ext {S T : (SMνCharges n).Charges}
2024-07-12 11:23:02 -04:00
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
2024-04-18 08:40:46 -04:00
accYY S = accYY T := by
rw [accYY_decomp, accYY_decomp]
repeat rw [hj]
/-- The quadratic bilinear map. -/
@[simps!]
def quadBiLin : BiLinearSymm (SMνCharges n).Charges := BiLinearSymm.mk₂
2024-04-22 08:41:50 -04:00
(fun S => ∑ i, (Q S.1 i * Q S.2 i +
2024-04-18 08:40:46 -04:00
- 2 * (U S.1 i * U S.2 i) +
D S.1 i * D S.2 i +
(- 1) * (L S.1 i * L S.2 i) +
2024-04-22 08:41:50 -04:00
E S.1 i * E S.2 i))
(by
intro a S T
2024-04-18 08:40:46 -04:00
simp only
rw [Finset.mul_sum]
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
2024-04-22 08:41:50 -04:00
ring)
(by
intro S T R
2024-04-18 08:40:46 -04:00
simp only
rw [← Finset.sum_add_distrib]
apply Fintype.sum_congr
intro i
repeat erw [map_add]
2024-04-18 08:47:45 -04:00
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue, neg_mul,
one_mul]
2024-04-22 08:41:50 -04:00
ring)
(by
intro S T
2024-04-18 08:47:45 -04:00
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, neg_mul, one_mul]
2024-04-18 08:40:46 -04:00
apply Fintype.sum_congr
intro i
2024-04-22 08:41:50 -04:00
ring)
2024-04-18 08:40:46 -04:00
lemma quadBiLin_decomp (S T : (SMνCharges n).Charges) :
2024-07-12 11:23:02 -04:00
quadBiLin S T = ∑ i, Q S i * Q T i - 2 * ∑ i, U S i * U T i +
∑ i, D S i * D T i - ∑ i, L S i * L T i + ∑ i, E S i * E T i := by
2024-04-18 08:40:46 -04:00
erw [← quadBiLin.toFun_eq_coe]
rw [quadBiLin]
2024-04-22 08:41:50 -04:00
simp only [quadBiLin, BiLinearSymm.mk₂, AddHom.toFun_eq_coe, AddHom.coe_mk, LinearMap.coe_mk]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
2024-04-18 08:47:45 -04:00
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, neg_mul, one_mul, add_left_inj]
2024-04-18 08:40:46 -04:00
ring
/-- The quadratic anomaly cancellation condition. -/
@[simp]
2024-07-12 11:23:02 -04:00
def accQuad : HomogeneousQuadratic (SMνCharges n).Charges :=
2024-04-18 08:40:46 -04:00
(@quadBiLin n).toHomogeneousQuad
lemma accQuad_decomp (S : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
accQuad S = ∑ i, (Q S i)^2 - 2 * ∑ i, (U S i)^2 + ∑ i, (D S i)^2 - ∑ i, (L S i)^2
+ ∑ i, (E S i)^2 := by
erw [quadBiLin_decomp]
ring_nf
/-- Extensionality lemma for `accQuad`. -/
lemma accQuad_ext {S T : (SMνCharges n).Charges}
2024-04-18 08:40:46 -04:00
(h : ∀ j, ∑ i, ((fun a => a^2) ∘ toSpecies j S) i =
∑ i, ((fun a => a^2) ∘ toSpecies j T) i) :
accQuad S = accQuad T := by
rw [accQuad_decomp, accQuad_decomp]
erw [h 0, h 1, h 2, h 3, h 4]
rfl
/-- The symmetric trilinear form used to define the cubic acc. -/
@[simps!]
def cubeTriLin : TriLinearSymm (SMνCharges n).Charges := TriLinearSymm.mk₃
(fun S => ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
2024-04-18 08:40:46 -04:00
+ 3 * ((U S.1 i) * (U S.2.1 i) * (U S.2.2 i))
+ 3 * ((D S.1 i) * (D S.2.1 i) * (D S.2.2 i))
+ 2 * ((L S.1 i) * (L S.2.1 i) * (L S.2.2 i))
2024-07-12 11:23:02 -04:00
+ ((E S.1 i) * (E S.2.1 i) * (E S.2.2 i))
+ ((N S.1 i) * (N S.2.1 i) * (N S.2.2 i))))
(by
intro a S T R
2024-04-18 08:40:46 -04:00
simp only
rw [Finset.mul_sum]
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
ring)
(by
intro S T R L
2024-04-18 08:40:46 -04:00
simp only
rw [← Finset.sum_add_distrib]
apply Fintype.sum_congr
intro i
repeat erw [map_add]
2024-04-18 08:47:45 -04:00
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue]
ring)
(by
intro S T L
2024-04-18 08:47:45 -04:00
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue]
2024-04-18 08:40:46 -04:00
apply Fintype.sum_congr
intro i
ring)
(by
intro S T L
2024-04-18 08:47:45 -04:00
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue]
2024-04-18 08:40:46 -04:00
apply Fintype.sum_congr
intro i
ring)
2024-04-18 08:40:46 -04:00
lemma cubeTriLin_decomp (S T R : (SMνCharges n).Charges) :
2024-07-12 11:23:02 -04:00
cubeTriLin S T R = 6 * ∑ i, (Q S i * Q T i * Q R i) + 3 * ∑ i, (U S i * U T i * U R i) +
3 * ∑ i, (D S i * D T i * D R i) + 2 * ∑ i, (L S i * L T i * L R i) +
2024-04-18 08:40:46 -04:00
∑ i, (E S i * E T i * E R i) + ∑ i, (N S i * N T i * N R i) := by
erw [← cubeTriLin.toFun_eq_coe]
rw [cubeTriLin]
simp only [TriLinearSymm.mk₃, BiLinearSymm.mk₂, SMνSpecies_numberCharges, toSpecies_apply,
Fin.isValue, AddHom.toFun_eq_coe, AddHom.coe_mk, LinearMap.coe_mk]
2024-04-18 08:40:46 -04:00
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- The cubic ACC. -/
@[simp]
def accCube : HomogeneousCubic (SMνCharges n).Charges := cubeTriLin.toCubic
2024-04-18 08:40:46 -04:00
lemma accCube_decomp (S : (SMνCharges n).Charges) :
2024-04-18 08:40:46 -04:00
accCube S = 6 * ∑ i, (Q S i)^3 + 3 * ∑ i, (U S i)^3 + 3 * ∑ i, (D S i)^3 + 2 * ∑ i, (L S i)^3 +
∑ i, (E S i)^3 + ∑ i, (N S i)^3 := by
erw [cubeTriLin_decomp]
ring_nf
/-- Extensionality lemma for `accCube`. -/
lemma accCube_ext {S T : (SMνCharges n).Charges}
2024-04-18 08:40:46 -04:00
(h : ∀ j, ∑ i, ((fun a => a^3) ∘ toSpecies j S) i =
∑ i, ((fun a => a^3) ∘ toSpecies j T) i) :
accCube S = accCube T := by
rw [accCube_decomp]
have h1 : ∀ j, ∑ i, (toSpecies j S i) ^ 3 = ∑ i, (toSpecies j T i) ^ 3 := by
intro j
erw [h]
rfl
repeat rw [h1]
rw [accCube_decomp]
end SMνACCs