PhysLean/HepLean/PerturbationTheory/FieldStatistics/Basic.lean

277 lines
9.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Algebra.FreeAlgebra
import Mathlib.Algebra.Lie.OfAssociative
import Mathlib.Analysis.Complex.Basic
import HepLean.Mathematics.List.InsertIdx
/-!
# Field statistics
Basic properties related to whether a field, or list of fields, is bosonic or fermionic.
-/
/-- A field can either be bosonic or fermionic in nature.
That is to say, they can either have Bose-Einstein statistics or
Fermi-Dirac statistics. -/
inductive FieldStatistic : Type where
| bosonic : FieldStatistic
| fermionic : FieldStatistic
deriving DecidableEq
namespace FieldStatistic
variable {𝓕 : Type}
/-- Field statistics form a commuative group equivalent to `ℤ₂`. -/
@[simp]
instance : CommGroup FieldStatistic where
one := bosonic
mul a b :=
match a, b with
| bosonic, bosonic => bosonic
| bosonic, fermionic => fermionic
| fermionic, bosonic => fermionic
| fermionic, fermionic => bosonic
inv a := a
mul_assoc a b c := by
cases a <;> cases b <;> cases c <;>
dsimp [HMul.hMul]
one_mul a := by
cases a <;> dsimp [HMul.hMul]
mul_one a := by
cases a <;> dsimp [HMul.hMul]
inv_mul_cancel a := by
cases a <;> dsimp only [HMul.hMul, Nat.succ_eq_add_one] <;> rfl
mul_comm a b := by
cases a <;> cases b <;> rfl
@[simp]
lemma bosonic_mul_bosonic : bosonic * bosonic = bosonic := rfl
@[simp]
lemma bosonic_mul_fermionic : bosonic * fermionic = fermionic := rfl
@[simp]
lemma fermionic_mul_bosonic : fermionic * bosonic = fermionic := rfl
@[simp]
lemma fermionic_mul_fermionic : fermionic * fermionic = bosonic := rfl
@[simp]
lemma mul_self (a : FieldStatistic) : a * a = 1 := by
cases a <;> rfl
/-- Field statics form a finite type. -/
instance : Fintype FieldStatistic where
elems := {bosonic, fermionic}
complete := by
intro c
cases c
· exact Finset.mem_insert_self bosonic {fermionic}
· refine Finset.insert_eq_self.mp ?_
exact rfl
@[simp]
lemma fermionic_not_eq_bonsic : ¬ fermionic = bosonic := by
intro h
exact FieldStatistic.noConfusion h
lemma bonsic_eq_fermionic_false : bosonic = fermionic ↔ false := by
simp only [reduceCtorEq, Bool.false_eq_true]
@[simp]
lemma neq_fermionic_iff_eq_bosonic (a : FieldStatistic) : ¬ a = fermionic ↔ a = bosonic := by
fin_cases a
· simp
· simp
@[simp]
lemma bosonic_neq_iff_fermionic_eq (a : FieldStatistic) : ¬ bosonic = a ↔ fermionic = a := by
fin_cases a
· simp
· simp
@[simp]
lemma fermionic_neq_iff_bosonic_eq (a : FieldStatistic) : ¬ fermionic = a ↔ bosonic = a := by
fin_cases a
· simp
· simp
lemma eq_self_if_eq_bosonic {a : FieldStatistic} :
(if a = bosonic then bosonic else fermionic) = a := by
fin_cases a <;> rfl
lemma eq_self_if_bosonic_eq {a : FieldStatistic} :
(if bosonic = a then bosonic else fermionic) = a := by
fin_cases a <;> rfl
lemma mul_eq_one_iff (a b : FieldStatistic) : a * b = 1 ↔ a = b := by
fin_cases a <;> fin_cases b <;> simp
lemma one_eq_mul_iff (a b : FieldStatistic) : 1 = a * b ↔ a = b := by
fin_cases a <;> fin_cases b <;> simp
lemma mul_eq_iff_eq_mul (a b c : FieldStatistic) : a * b = c ↔ a = b * c := by
fin_cases a <;> fin_cases b <;> fin_cases c <;>
simp only [bosonic_mul_fermionic, fermionic_not_eq_bonsic, mul_self,
reduceCtorEq, fermionic_mul_bosonic, true_iff, iff_true]
all_goals rfl
lemma mul_eq_iff_eq_mul' (a b c : FieldStatistic) : a * b = c ↔ b = a * c := by
fin_cases a <;> fin_cases b <;> fin_cases c <;>
simp only [bosonic_mul_fermionic, fermionic_not_eq_bonsic, mul_self,
reduceCtorEq, fermionic_mul_bosonic, true_iff, iff_true]
all_goals rfl
/-- The field statistics of a list of fields is fermionic if ther is an odd number of fermions,
otherwise it is bosonic. -/
def ofList (s : 𝓕 → FieldStatistic) : (φs : List 𝓕) → FieldStatistic
| [] => bosonic
| φ :: φs => if s φ = ofList s φs then bosonic else fermionic
lemma ofList_cons_eq_mul (s : 𝓕 → FieldStatistic) (φ : 𝓕) (φs : List 𝓕) :
ofList s (φ :: φs) = s φ * ofList s φs := by
have ha (a b : FieldStatistic) : (if a = b then bosonic else fermionic) = a * b := by
fin_cases a <;> fin_cases b <;> rfl
exact ha (s φ) (ofList s φs)
lemma ofList_eq_prod (s : 𝓕 → FieldStatistic) : (φs : List 𝓕) →
ofList s φs = (List.map s φs).prod
| [] => rfl
| φ :: φs => by
rw [ofList_cons_eq_mul, List.map_cons, List.prod_cons, ofList_eq_prod]
@[simp]
lemma ofList_singleton (s : 𝓕 → FieldStatistic) (φ : 𝓕) : ofList s [φ] = s φ := by
simp only [ofList, Fin.isValue]
rw [eq_self_if_eq_bosonic]
@[simp]
lemma ofList_freeMonoid (s : 𝓕 → FieldStatistic) (φ : 𝓕) : ofList s (FreeMonoid.of φ) = s φ :=
ofList_singleton s φ
@[simp]
lemma ofList_empty (s : 𝓕 → FieldStatistic) : ofList s [] = bosonic := rfl
@[simp]
lemma ofList_append (s : 𝓕 → FieldStatistic) (φs φs' : List 𝓕) :
ofList s (φs ++ φs') = if ofList s φs = ofList s φs' then bosonic else fermionic := by
induction φs with
| nil =>
simp only [List.nil_append, ofList_empty, Fin.isValue, eq_self_if_bosonic_eq]
| cons a l ih =>
have hab (a b c : FieldStatistic) :
(if a = (if b = c then bosonic else fermionic) then bosonic else fermionic) =
if (if a = b then bosonic else fermionic) = c then bosonic else fermionic := by
fin_cases a <;> fin_cases b <;> fin_cases c <;> rfl
simp only [ofList, List.append_eq, Fin.isValue, ih, hab]
lemma ofList_append_eq_mul (s : 𝓕 → FieldStatistic) (φs φs' : List 𝓕) :
ofList s (φs ++ φs') = ofList s φs * ofList s φs' := by
rw [ofList_append]
have ha (a b : FieldStatistic) : (if a = b then bosonic else fermionic) = a * b := by
fin_cases a <;> fin_cases b <;> rfl
exact ha _ _
lemma ofList_perm (s : 𝓕 → FieldStatistic) {l l' : List 𝓕} (h : l.Perm l') :
ofList s l = ofList s l' := by
rw [ofList_eq_prod, ofList_eq_prod]
exact List.Perm.prod_eq (List.Perm.map s h)
lemma ofList_orderedInsert (s : 𝓕 → FieldStatistic) (le1 : 𝓕𝓕 → Prop) [DecidableRel le1]
(φs : List 𝓕) (φ : 𝓕) : ofList s (List.orderedInsert le1 φ φs) = ofList s (φ :: φs) :=
ofList_perm s (List.perm_orderedInsert le1 φ φs)
@[simp]
lemma ofList_insertionSort (s : 𝓕 → FieldStatistic) (le1 : 𝓕𝓕 → Prop) [DecidableRel le1]
(φs : List 𝓕) : ofList s (List.insertionSort le1 φs) = ofList s φs :=
ofList_perm s (List.perm_insertionSort le1 φs)
lemma ofList_map_eq_finset_prod (s : 𝓕 → FieldStatistic) :
(φs : List 𝓕) → (l : List (Fin φs.length)) → (hl : l.Nodup) →
ofList s (l.map φs.get) = ∏ (i : Fin φs.length), if i ∈ l then s φs[i] else 1
| [], [], _ => rfl
| [], i :: l, hl => Fin.elim0 i
| φ :: φs, [], hl => by
simp only [List.length_cons, List.map_nil, ofList_empty, List.not_mem_nil, ↓reduceIte,
Finset.prod_const_one]
rfl
| φ :: φs, i :: l, hl => by
simp only [List.length_cons, List.map_cons, List.get_eq_getElem, List.mem_cons, instCommGroup,
Fin.getElem_fin]
rw [ofList_cons_eq_mul]
rw [ofList_map_eq_finset_prod s (φ :: φs) l]
have h1 : s (φ :: φs)[↑i] = ∏ (j : Fin (φ :: φs).length),
if j = i then s (φ :: φs)[↑i] else 1 := by
rw [Fintype.prod_ite_eq']
erw [h1]
rw [← Finset.prod_mul_distrib]
congr
funext a
simp only [instCommGroup, List.length_cons, mul_ite, ite_mul, one_mul, mul_one]
by_cases ha : a = i
· simp only [ha, ↓reduceIte, mul_self, true_or]
rw [if_neg]
rfl
simp only [List.length_cons, List.nodup_cons] at hl
exact hl.1
· simp only [ha, ↓reduceIte, false_or]
rfl
simp only [List.length_cons, List.nodup_cons] at hl
exact hl.2
/-!
## ofList and take
-/
section ofListTake
open HepLean.List
variable (q : 𝓕 → FieldStatistic)
lemma ofList_take_insert (n : ) (φ : 𝓕) (φs : List 𝓕) :
ofList q (List.take n φs) = ofList q (List.take n (List.insertIdx n φ φs)) := by
congr 1
rw [take_insert_same]
lemma ofList_take_eraseIdx (n : ) (φs : List 𝓕) :
ofList q (List.take n (φs.eraseIdx n)) = ofList q (List.take n φs) := by
congr 1
rw [take_eraseIdx_same]
lemma ofList_take_zero (φs : List 𝓕) :
ofList q (List.take 0 φs) = 1 := by
simp only [List.take_zero, ofList_empty]
rfl
lemma ofList_take_succ_cons (n : ) (φ1 : 𝓕) (φs : List 𝓕) :
ofList q ((φ1 :: φs).take (n + 1)) = q φ1 * ofList q (φs.take n) := by
simp only [List.take_succ_cons, instCommGroup]
rw [ofList_cons_eq_mul]
lemma ofList_take_insertIdx_gt (n m : ) (φ1 : 𝓕) (φs : List 𝓕) (hn : n < m) :
ofList q ((List.insertIdx m φ1 φs).take n) = ofList q (φs.take n) := by
rw [take_insert_gt φ1 n m hn φs]
lemma ofList_insert_lt_eq (n m : ) (φ1 : 𝓕) (φs : List 𝓕) (hn : m ≤ n)
(hm : m ≤ φs.length) :
ofList q ((List.insertIdx m φ1 φs).take (n + 1)) =
ofList q ((φ1 :: φs).take (n + 1)) := by
apply ofList_perm
simp only [List.take_succ_cons]
refine take_insert_let φ1 n m hn φs hm
lemma ofList_take_insertIdx_le (n m : ) (φ1 : 𝓕) (φs : List 𝓕) (hn : m ≤ n) (hm : m ≤ φs.length) :
ofList q ((List.insertIdx m φ1 φs).take (n + 1)) = q φ1 * ofList q (φs.take n) := by
rw [ofList_insert_lt_eq, ofList_take_succ_cons]
· exact hn
· exact hm
end ofListTake
end FieldStatistic