PhysLean/HepLean/AnomalyCancellation/MSSMNu/SolsParameterization.lean

640 lines
24 KiB
Text
Raw Normal View History

2024-04-17 16:23:40 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
import HepLean.AnomalyCancellation.MSSMNu.PlaneY3B3Orthog
import Mathlib.Tactic.Polyrith
/-!
# Parameterization of solutions to the MSSM anomaly cancellation equations
This file uses planes through $Y_3$ and $B_3$ to form solutions to the anomaly cancellation
conditions.
Split into four cases:
- The generic case.
- `case₁`: The case when the quadratic and cubic lines agree (if they exist uniquely).
- `case₂`: The case where the plane lies entirely within the quadratic.
- `case₃`: The case where the plane lies entirely within the cubic and quadratic.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- Given a `R ∈ LinSols` perpendicular to $Y_3$, and $B_3$, a solution to the quadratic. -/
def genericQuad (R : MSSMACC.AnomalyFreePerp) : MSSMACC.QuadSols :=
lineQuad R
(3 * cubeTriLin (R.val, R.val, Y₃.val))
(3 * cubeTriLin (R.val, R.val, B₃.val))
(cubeTriLin (R.val, R.val, R.val))
lemma genericQuad_cube (R : MSSMACC.AnomalyFreePerp) :
accCube (genericQuad R).val = 0 := by
rw [genericQuad]
rw [lineQuad_val]
rw [planeY₃B₃_cubic]
ring
/-- Given a `R ∈ LinSols` perpendicular to $Y_3$, and $B_3$, a element of `Sols`. -/
def generic (R : MSSMACC.AnomalyFreePerp) : MSSMACC.Sols :=
AnomalyFreeMk'' (genericQuad R) (genericQuad_cube R)
lemma generic_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
(generic R).1.1 = planeY₃B₃ R (α₁ R) (α₂ R) (α₃ R) := by
change (planeY₃B₃ _ _ _ _) = _
apply planeY₃B₃_eq
rw [α₁, α₂, α₃]
ring_nf
simp
/-- Case₁ is when the quadratic and cubic lines in the plane agree, which occurs when
`α₁ R = 0`, `α₂ R = 0` and `α₃ R = 0` (if they exist uniquely). -/
def case₁prop (R : MSSMACC.AnomalyFreePerp) : Prop :=
α₁ R = 0 ∧ α₂ R = 0 ∧ α₃ R = 0
/-- Case₂ is defined when the plane lies entirely within the quadratic. -/
def case₂prop (R : MSSMACC.AnomalyFreePerp) : Prop :=
quadBiLin (R.val, R.val) = 0 ∧ quadBiLin (Y₃.val, R.val) = 0 ∧ quadBiLin (B₃.val, R.val) = 0
/-- Case₃ is defined when the plane lies entirely within the quadratic and cubic. -/
def case₃prop (R : MSSMACC.AnomalyFreePerp) : Prop :=
quadBiLin (R.val, R.val) = 0 ∧ quadBiLin (Y₃.val, R.val) = 0 ∧ quadBiLin (B₃.val, R.val) = 0 ∧
cubeTriLin (R.val, R.val, R.val) = 0 ∧ cubeTriLin (R.val, R.val, B₃.val) = 0 ∧
cubeTriLin (R.val, R.val, Y₃.val) = 0
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (case₁prop R) := by
apply And.decidable
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (case₂prop R) := by
apply And.decidable
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (case₃prop R) := by
apply And.decidable
section proj
/-- On elements of `Sols`, `generic (proj _)` is equivalent to multiplying
by `genericProjCoeff`. -/
def genericProjCoeff (T : MSSMACC.Sols) : :=
dot (Y₃.val, B₃.val) * α₃ (proj T.1.1)
lemma generic_proj (T : MSSMACC.Sols) :
generic (proj T.1.1) = (genericProjCoeff T) • T := by
apply ACCSystem.Sols.ext
erw [generic_eq_planeY₃B₃_on_α]
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [α₁_proj, α₂_proj]
simp
rfl
lemma genericProjCoeff_ne_zero (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0 ) :
(genericProjCoeff T)⁻¹ • generic (proj T.1.1) = T := by
rw [generic_proj, ← MulAction.mul_smul, mul_comm, mul_inv_cancel hT]
simp
lemma genericProjCoeff_zero_α₃ (T : MSSMACC.Sols) (hT : genericProjCoeff T = 0) :
α₃ (proj T.1.1) = 0 := by
rw [genericProjCoeff, mul_eq_zero] at hT
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at hT
simp at hT
exact hT
lemma genericProjCoeff_zero_α₂ (T : MSSMACC.Sols) (hT : genericProjCoeff T = 0) :
α₂ (proj T.1.1) = 0 := by
rw [α₂_proj, genericProjCoeff_zero_α₃ T hT]
simp
lemma genericProjCoeff_zero_α₁ (T : MSSMACC.Sols) (hT : genericProjCoeff T = 0) :
α₁ (proj T.1.1) = 0 := by
rw [α₁_proj, genericProjCoeff_zero_α₃ T hT]
simp
lemma genericProjCoeff_zero (T : MSSMACC.Sols) :
genericProjCoeff T = 0 ↔ case₁prop (proj T.1.1) := by
apply Iff.intro
intro hT
rw [case₁prop]
rw [genericProjCoeff_zero_α₁ T hT, genericProjCoeff_zero_α₂ T hT, genericProjCoeff_zero_α₃ T hT]
simp only [and_self]
intro h
rw [case₁prop] at h
rw [genericProjCoeff]
rw [h.2.2]
simp
lemma genericProjCoeff_neq_zero_case₁ (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0) :
¬ case₁prop (proj T.1.1) :=
(genericProjCoeff_zero T).mpr.mt hT
lemma genericProjCoeff_neq_zero_case₂ (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0) :
¬ case₂prop (proj T.1.1) := by
by_contra hn
rw [case₂prop] at hn
rw [genericProjCoeff, α₃] at hT
simp_all
lemma genericProjCoeff_neq_zero_case₃ (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0) :
¬ case₃prop (proj T.1.1) := by
by_contra hn
rw [case₃prop] at hn
rw [genericProjCoeff, α₃] at hT
simp_all
end proj
/-- The case when the quadratic and cubic lines agree (if they exist uniquely). -/
def case₁ (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ : )
(h : case₁prop R) : MSSMACC.Sols :=
AnomalyFreeMk'' (lineQuad R c₁ c₂ c₃)
(by
rw [lineQuad_cube]
rw [h.1, h.2.1, h.2.2]
simp)
lemma case₁_smul (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ d : )
(h : case₁prop R) : case₁ R (d * c₁) (d * c₂) (d * c₃) h = d • case₁ R c₁ c₂ c₃ h := by
apply ACCSystem.Sols.ext
change (lineQuad _ _ _ _).val = _
rw [lineQuad_smul]
rfl
section proj
/-- The coefficent which multiplies a solution on passing through `case₁`. -/
def case₁ProjCoeff (T : MSSMACC.Sols) : :=
2 * (quadBiLin (Y₃.val, (proj T.1.1).val) ^ 2 +
quadBiLin (B₃.val, (proj T.1.1).val) ^ 2)
/-- The first parameter in case₁ needed to form an inverse on Proj. -/
def case₁ProjC₁ (T : MSSMACC.Sols) : := (quadBiLin (B₃.val, T.val))
/-- The second parameter in case₁ needed to form an inverse on Proj. -/
def case₁ProjC₂ (T : MSSMACC.Sols) : := (- quadBiLin (Y₃.val, T.val))
/-- The third parameter in case₁ needed to form an inverse on Proj. -/
def case₁ProjC₃ (T : MSSMACC.Sols) : :=
- quadBiLin (B₃.val, T.val) * ( dot (Y₃.val, T.val)- dot (B₃.val, T.val) )
- quadBiLin (Y₃.val, T.val) * ( dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val) )
lemma case₁_proj (T : MSSMACC.Sols) (h1 : genericProjCoeff T = 0) :
case₁ (proj T.1.1)
(case₁ProjC₁ T)
(case₁ProjC₂ T)
(case₁ProjC₃ T)
((genericProjCoeff_zero T).mp h1)
= (case₁ProjCoeff T) • T := by
apply ACCSystem.Sols.ext
change (lineQuad _ _ _ _).val = _
rw [lineQuad_val]
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [case₁ProjCoeff, case₁ProjC₁, case₁ProjC₂, case₁ProjC₃, quad_proj, quad_Y₃_proj, quad_B₃_proj]
ring_nf
simp
rfl
lemma case₁ProjCoeff_ne_zero (T : MSSMACC.Sols) (h1 : genericProjCoeff T = 0)
(hT : case₁ProjCoeff T ≠ 0 ) :
(case₁ProjCoeff T)⁻¹ • case₁ (proj T.1.1)
(case₁ProjC₁ T)
(case₁ProjC₂ T)
(case₁ProjC₃ T)
((genericProjCoeff_zero T).mp h1) = T := by
rw [case₁_proj T h1, ← MulAction.mul_smul, mul_comm, mul_inv_cancel hT]
simp
lemma case₁ProjCoeff_zero_Y₃_B₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (Y₃.val, (proj T.1.1).val) = 0 ∧
quadBiLin (B₃.val, (proj T.1.1).val) = 0 := by
rw [case₁ProjCoeff, mul_eq_zero] at h1
simp only [OfNat.ofNat_ne_zero, Fin.isValue, Fin.reduceFinMk, false_or] at h1
have h : quadBiLin (Y₃.val, (proj T.1.1).val) ^ 2 = 0 ∧
quadBiLin (B₃.val, (proj T.1.1).val) ^ 2 = 0 :=
(add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp h1
simp only [ Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
not_false_eq_true, pow_eq_zero_iff] at h
exact h
lemma case₁ProjCoeff_zero_Y₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (Y₃.val, (proj T.1.1).val) = 0 :=
(case₁ProjCoeff_zero_Y₃_B₃ T h1).left
lemma case₁ProjCoeff_zero_B₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (B₃.val, (proj T.1.1).val) = 0 :=
(case₁ProjCoeff_zero_Y₃_B₃ T h1).right
lemma case₁ProjCoeff_zero_T (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (T.val, (proj T.1.1).val) = 0 := by
have hY3 : quadBiLin (T.val, Y₃.val) = 0 := by
have h11 := case₁ProjCoeff_zero_Y₃ T h1
rw [quad_Y₃_proj] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero,
false_or] at h11
erw [quadBiLin.swap] at h11
exact h11
have hB3 : quadBiLin (T.val, B₃.val) = 0 := by
have h11 := case₁ProjCoeff_zero_B₃ T h1
rw [quad_B₃_proj] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero,
false_or] at h11
erw [quadBiLin.swap] at h11
exact h11
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [hY3, hB3]
erw [quadSol T.1]
simp
lemma case₁ProjCoeff_zero_self (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin ((proj T.1.1).val, (proj T.1.1).val) = 0 := by
nth_rewrite 1 [proj_val]
rw [quadBiLin.map_add₁, quadBiLin.map_add₁]
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₁, quadBiLin.map_smul₁]
rw [case₁ProjCoeff_zero_Y₃ T h1, case₁ProjCoeff_zero_B₃ T h1, case₁ProjCoeff_zero_T T h1]
simp
lemma case₁ProjCoeff_zero (T : MSSMACC.Sols) :
case₁ProjCoeff T = 0 ↔ case₂prop (proj T.1.1) := by
apply Iff.intro
intro h1
rw [case₂prop]
rw [case₁ProjCoeff_zero_self T h1, case₁ProjCoeff_zero_Y₃ T h1, case₁ProjCoeff_zero_B₃ T h1]
simp only [and_self]
intro h
rw [case₂prop] at h
rw [case₁ProjCoeff]
rw [h.2.1, h.2.2]
simp
lemma case₁ProjCoeff_ne_zero_case₂ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T ≠ 0) :
¬ case₂prop (proj T.1.1) :=
(case₁ProjCoeff_zero T).mpr.mt h1
lemma case₁ProjCoeff_ne_zero_case₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T ≠ 0) :
¬ case₃prop (proj T.1.1) := by
by_contra hn
rw [case₃prop] at hn
rw [case₁ProjCoeff] at h1
simp_all
end proj
/-- The case where the plane lies entirely within the quadratic. -/
def case₂ (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : )
(h : case₂prop R) : MSSMACC.Sols :=
AnomalyFreeMk' (lineCube R a₁ a₂ a₃)
(by
erw [planeY₃B₃_quad]
rw [h.1, h.2.1, h.2.2]
simp)
(lineCube_cube R a₁ a₂ a₃)
lemma case₂_smul (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ d : )
(h : case₂prop R) : case₂ R (d * c₁) (d * c₂) (d * c₃) h = d • case₂ R c₁ c₂ c₃ h := by
apply ACCSystem.Sols.ext
change (lineCube _ _ _ _).val = _
rw [lineCube_smul]
rfl
section proj
/-- The coefficent which multiplies a solution on passing through `case₂`. -/
def case₂ProjCoeff (T : MSSMACC.Sols) : :=
3 * dot (Y₃.val, B₃.val) ^ 3 * (cubeTriLin (T.val, T.val, Y₃.val) ^ 2 +
cubeTriLin (T.val, T.val, B₃.val) ^ 2 )
/-- The first parameter in `case₂` needed to form an inverse on `Proj`. -/
def case₂ProjC₁ (T : MSSMACC.Sols) : := cubeTriLin (T.val, T.val, B₃.val)
/-- The second parameter in `case₂` needed to form an inverse on `Proj`. -/
def case₂ProjC₂ (T : MSSMACC.Sols) : := - cubeTriLin (T.val, T.val, Y₃.val)
/-- The third parameter in `case₂` needed to form an inverse on `Proj`. -/
def case₂ProjC₃ (T : MSSMACC.Sols) : :=
(- cubeTriLin (T.val, T.val, B₃.val) * (dot (Y₃.val, T.val) - dot (B₃.val, T.val))
- cubeTriLin (T.val, T.val, Y₃.val) * (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)))
lemma case₂_proj (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
case₂ (proj T.1.1)
(case₂ProjC₁ T)
(case₂ProjC₂ T)
(case₂ProjC₃ T)
((case₁ProjCoeff_zero T).mp h1) = (case₂ProjCoeff T) • T := by
apply ACCSystem.Sols.ext
change (planeY₃B₃ _ _ _ _).val = _
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [case₂ProjCoeff, case₂ProjC₁, case₂ProjC₂, case₂ProjC₃, cube_proj, cube_proj_proj_B₃,
cube_proj_proj_Y₃]
ring_nf
simp
rfl
lemma case₂ProjCoeff_ne_zero (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0)
(hT : case₂ProjCoeff T ≠ 0 ) :
(case₂ProjCoeff T)⁻¹ • case₂ (proj T.1.1)
(case₂ProjC₁ T)
(case₂ProjC₂ T)
(case₂ProjC₃ T)
((case₁ProjCoeff_zero T).mp h1) = T := by
rw [case₂_proj T h1, ← MulAction.mul_smul, mul_comm, mul_inv_cancel hT]
simp
lemma case₂ProjCoeff_zero_Y₃_B₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, Y₃.val) = 0 ∧
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, B₃.val) = 0 := by
rw [case₂ProjCoeff, mul_eq_zero] at h1
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h1
simp at h1
have h : cubeTriLin (T.val, T.val, Y₃.val) ^ 2 = 0 ∧
cubeTriLin (T.val, T.val, B₃.val) ^ 2 = 0 :=
(add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp h1
simp at h
have h1 := cube_proj_proj_B₃ T.1.1
erw [h.2] at h1
have h2 := cube_proj_proj_Y₃ T.1.1
erw [h.1] at h2
simp_all
lemma case₂ProjCoeff_zero_Y₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, Y₃.val) = 0 :=
(case₂ProjCoeff_zero_Y₃_B₃ T h1).left
lemma case₂ProjCoeff_zero_B₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, B₃.val) = 0 :=
(case₂ProjCoeff_zero_Y₃_B₃ T h1).right
lemma case₂ProjCoeff_zero_T (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, T.val) = 0 := by
rw [cube_proj_proj_self]
have hr : cubeTriLin (T.val, T.val, Y₃.val) = 0 := by
have h11 := case₂ProjCoeff_zero_Y₃ T h1
rw [cube_proj_proj_Y₃] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp at h11
exact h11
have h2 : cubeTriLin (T.val, T.val, B₃.val) = 0 := by
have h11 := case₂ProjCoeff_zero_B₃ T h1
rw [cube_proj_proj_B₃] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp at h11
exact h11
rw [hr, h2]
simp
lemma case₂ProjCoeff_zero_self (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, (proj T.1.1).val) = 0 := by
nth_rewrite 3 [proj_val]
rw [cubeTriLin.map_add₃, cubeTriLin.map_add₃]
rw [cubeTriLin.map_smul₃, cubeTriLin.map_smul₃, cubeTriLin.map_smul₃]
rw [case₂ProjCoeff_zero_Y₃ T h1, case₂ProjCoeff_zero_B₃ T h1, case₂ProjCoeff_zero_T T h1]
simp
lemma case₂ProjCoeff_zero (T : MSSMACC.Sols) :
(case₁ProjCoeff T = 0 ∧ case₂ProjCoeff T = 0) ↔ case₃prop (proj T.1.1) := by
apply Iff.intro
intro h1
rw [case₃prop]
rw [case₂ProjCoeff_zero_self T h1.2, case₂ProjCoeff_zero_Y₃ T h1.2, case₂ProjCoeff_zero_B₃ T h1.2]
rw [case₁ProjCoeff_zero_self T h1.1, case₁ProjCoeff_zero_Y₃ T h1.1, case₁ProjCoeff_zero_B₃ T h1.1]
simp only [and_self]
intro h
rw [case₃prop] at h
rw [case₁ProjCoeff, case₂ProjCoeff]
simp_all only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero,
mul_zero, mul_eq_zero, pow_eq_zero_iff, false_or, true_and]
erw [show dot (Y₃.val, B₃.val) = 108 by rfl]
simp only [OfNat.ofNat_ne_zero, false_or]
have h1' := cube_proj_proj_B₃ T.1.1
have h2' := cube_proj_proj_Y₃ T.1.1
erw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h1' h2'
simp_all
lemma case₂ProjCoeff_ne_zero_case₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T ≠ 0) :
¬ case₃prop (proj T.1.1) := by
have h1 : ¬ (case₁ProjCoeff T = 0 ∧ case₂ProjCoeff T = 0) := by
simp_all
exact (case₂ProjCoeff_zero T).mpr.mt h1
end proj
/-- The case where the plane lies entirely within the quadratic and cubic. -/
def case₃ (R : MSSMACC.AnomalyFreePerp) (b₁ b₂ b₃ : )
(h₃ : case₃prop R) :
MSSMACC.Sols :=
AnomalyFreeMk' (planeY₃B₃ R b₁ b₂ b₃)
(by
rw [planeY₃B₃_quad]
rw [h₃.1, h₃.2.1, h₃.2.2.1]
simp)
(by
rw [planeY₃B₃_cubic]
rw [h₃.2.2.2.1, h₃.2.2.2.2.1, h₃.2.2.2.2.2]
simp)
lemma case₃_smul (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ d : )
(h : case₃prop R) : case₃ R (d * c₁) (d * c₂) (d * c₃) h = d • case₃ R c₁ c₂ c₃ h := by
apply ACCSystem.Sols.ext
change (planeY₃B₃ _ _ _ _).val = _
rw [planeY₃B₃_smul]
rfl
section proj
/-- The coefficent which multiplies a solution on passing through `case₃`. -/
def case₃ProjCoeff : := dot (Y₃.val, B₃.val)
/-- The first parameter in `case₃` needed to form an inverse on `Proj`. -/
def case₃ProjC₁ (T : MSSMACC.Sols) : := (dot (Y₃.val, T.val) - dot (B₃.val, T.val))
/-- The second parameter in `case₃` needed to form an inverse on `Proj`. -/
def case₃ProjC₂ (T : MSSMACC.Sols) : := (2 * dot (B₃.val, T.val) - dot (Y₃.val, T.val))
lemma case₃_proj (T : MSSMACC.Sols) (h0 : case₁ProjCoeff T = 0) (h1 : case₂ProjCoeff T = 0) :
case₃ (proj T.1.1)
(case₃ProjC₁ T)
(case₃ProjC₂ T)
1
((case₂ProjCoeff_zero T).mp (And.intro h0 h1)) = case₃ProjCoeff • T := by
apply ACCSystem.Sols.ext
change (planeY₃B₃ _ _ _ _).val = _
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [case₃ProjC₁, case₃ProjC₂]
ring_nf
simp
rfl
lemma case₃_smul_coeff (T : MSSMACC.Sols) (h0 : case₁ProjCoeff T = 0) (h1 : case₂ProjCoeff T = 0) :
case₃ProjCoeff⁻¹ • case₃ (proj T.1.1)
(case₃ProjC₁ T)
(case₃ProjC₂ T)
1
((case₂ProjCoeff_zero T).mp (And.intro h0 h1)) = T := by
rw [case₃_proj T h0 h1]
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel]
simp only [one_smul]
rw [case₃ProjCoeff]
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true]
end proj
/-- A map from `MSSMACC.AnomalyFreePerp × × × ` to `MSSMACC.Sols`.
This allows generation of solutions given elements of `MSSMACC.AnomalyFreePerp` and
three rational numbers. -/
def parameterization :
MSSMACC.AnomalyFreePerp × × × → MSSMACC.Sols := fun A =>
if h₃ : case₃prop A.1 then
case₃ A.1 A.2.1 A.2.2.1 A.2.2.2 h₃
else
if h₂ : case₂prop A.1 then
case₂ A.1 A.2.1 A.2.2.1 A.2.2.2 h₂
else
if h₁ : case₁prop A.1 then
case₁ A.1 A.2.1 A.2.2.1 A.2.2.2 h₁
else
A.2.1 • generic A.1
lemma parameterization_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ) :
parameterization (R, d * a, d * b, d * c) = d • parameterization (R, a, b, c) := by
rw [parameterization, parameterization]
by_cases h₃ : case₃prop R
rw [dif_pos h₃, dif_pos h₃]
rw [case₃_smul]
rw [dif_neg h₃, dif_neg h₃]
by_cases h₂ : case₂prop R
rw [dif_pos h₂, dif_pos h₂]
rw [case₂_smul]
rw [dif_neg h₂, dif_neg h₂]
by_cases h₁ : case₁prop R
rw [dif_pos h₁, dif_pos h₁]
rw [case₁_smul]
rw [dif_neg h₁, dif_neg h₁]
rw [mul_smul]
lemma parameterization_not₁₂₃ (R : MSSMACC.AnomalyFreePerp) (a b c : )
(h1 : ¬ case₁prop R) (h2 : ¬ case₂prop R) (h3 : ¬ case₃prop R) :
parameterization (R, a, b, c) = a • generic R := by
rw [parameterization]
rw [dif_neg h3]
rw [dif_neg h2]
rw [dif_neg h1]
lemma parameterization_is₁_not₂₃ (R : MSSMACC.AnomalyFreePerp) (a b c : )
(h1 : case₁prop R) (h2 : ¬ case₂prop R) (h3 : ¬ case₃prop R) :
parameterization (R, a, b, c) = case₁ R a b c h1:= by
rw [parameterization]
rw [dif_neg h3]
rw [dif_neg h2]
rw [dif_pos h1]
lemma parameterization_is₁₂_not₃ (R : MSSMACC.AnomalyFreePerp) (a b c : ) (h2 : case₂prop R)
(h3 : ¬ case₃prop R) : parameterization (R, a, b, c) = case₂ R a b c h2 := by
rw [parameterization]
rw [dif_neg h3]
rw [dif_pos h2]
lemma parameterization_is₃ (R : MSSMACC.AnomalyFreePerp) (a b c : ) (h3 : case₃prop R) :
parameterization (R, a, b, c) = case₃ R a b c h3 := by
rw [parameterization]
rw [dif_pos h3]
/-- A right inverse of `parameterizaiton`. -/
def inverse (R : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × × × :=
if genericProjCoeff R ≠ 0 then
(proj R.1.1, (genericProjCoeff R)⁻¹, 0, 0)
else
if case₁ProjCoeff R ≠ 0 then
(proj R.1.1, (case₁ProjCoeff R)⁻¹ * case₁ProjC₁ R, (case₁ProjCoeff R)⁻¹ * case₁ProjC₂ R,
(case₁ProjCoeff R)⁻¹ * case₁ProjC₃ R)
else
if case₂ProjCoeff R ≠ 0 then
(proj R.1.1, (case₂ProjCoeff R)⁻¹ * case₂ProjC₁ R, (case₂ProjCoeff R)⁻¹ * case₂ProjC₂ R,
(case₂ProjCoeff R)⁻¹ * case₂ProjC₃ R)
else
(proj R.1.1, (case₃ProjCoeff)⁻¹ * case₃ProjC₁ R, (case₃ProjCoeff)⁻¹ * case₃ProjC₂ R,
(case₃ProjCoeff)⁻¹ * 1)
lemma inverse_generic (R : MSSMACC.Sols) (h : genericProjCoeff R ≠ 0) :
inverse R = (proj R.1.1, (genericProjCoeff R)⁻¹, 0, 0) := by
rw [inverse, if_pos h]
lemma inverse_case₁ (R : MSSMACC.Sols) (h0 : genericProjCoeff R = 0)
(h1 : case₁ProjCoeff R ≠ 0) : inverse R = (proj R.1.1, (case₁ProjCoeff R)⁻¹ * case₁ProjC₁ R,
(case₁ProjCoeff R)⁻¹ * case₁ProjC₂ R, (case₁ProjCoeff R)⁻¹ * case₁ProjC₃ R) := by
rw [inverse]
simp_all
lemma inverse_case₂ (R : MSSMACC.Sols) (h0 : genericProjCoeff R = 0)
(h1 : case₁ProjCoeff R = 0) (h2 : case₂ProjCoeff R ≠ 0) : inverse R = (proj R.1.1,
(case₂ProjCoeff R)⁻¹ * case₂ProjC₁ R,
(case₂ProjCoeff R)⁻¹ * case₂ProjC₂ R, (case₂ProjCoeff R)⁻¹ * case₂ProjC₃ R) := by
rw [inverse]
simp_all
lemma inverse_case₃ (R : MSSMACC.Sols) (h0 : genericProjCoeff R = 0)
(h1 : case₁ProjCoeff R = 0) (h2 : case₂ProjCoeff R = 0) :
inverse R = (proj R.1.1, (case₃ProjCoeff)⁻¹ * case₃ProjC₁ R,
(case₃ProjCoeff)⁻¹ * case₃ProjC₂ R,
(case₃ProjCoeff)⁻¹ * 1) := by
rw [inverse]
simp_all
lemma inverse_parameterization (R : MSSMACC.Sols) :
parameterization (inverse R) = R := by
by_cases h0 : genericProjCoeff R ≠ 0
rw [inverse_generic R h0]
rw [parameterization_not₁₂₃ _ _ _ _ (genericProjCoeff_neq_zero_case₁ R h0)
(genericProjCoeff_neq_zero_case₂ R h0) (genericProjCoeff_neq_zero_case₃ R h0)]
rw [genericProjCoeff_ne_zero R h0]
by_cases h1 : case₁ProjCoeff R ≠ 0
simp at h0
rw [inverse_case₁ R h0 h1]
rw [parameterization_smul]
rw [parameterization_is₁_not₂₃ _ _ _ _ ((genericProjCoeff_zero R).mp h0)
(case₁ProjCoeff_ne_zero_case₂ R h1) (case₁ProjCoeff_ne_zero_case₃ R h1)]
rw [case₁ProjCoeff_ne_zero R h0 h1]
simp at h0 h1
by_cases h2 : case₂ProjCoeff R ≠ 0
rw [inverse_case₂ R h0 h1 h2]
rw [parameterization_smul]
rw [parameterization_is₁₂_not₃ _ _ _ _ ((case₁ProjCoeff_zero R).mp h1)
(case₂ProjCoeff_ne_zero_case₃ R h2)]
rw [case₂ProjCoeff_ne_zero R h1 h2]
simp at h2
rw [inverse_case₃ R h0 h1 h2]
rw [parameterization_smul]
rw [parameterization_is₃ _ _ _ _ ((case₂ProjCoeff_zero R).mp (And.intro h1 h2))]
rw [case₃_smul_coeff R h1 h2]
theorem parameterization_surjective : Function.Surjective parameterization := by
intro T
use inverse T
exact inverse_parameterization T
end MSSMACC