PhysLean/HepLean/AnomalyCancellation/SMNu/Ordinary/Basic.lean

125 lines
3.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Basic
import HepLean.AnomalyCancellation.SMNu.Permutations
/-!
# ACC system for SM with RHN (without hypercharge).
2024-04-18 09:06:16 -04:00
We define the ACC system for the Standard Model (without hypercharge) with right-handed neutrinos.
-/
universe v u
namespace SMRHN
open SMνCharges
open SMνACCs
open BigOperators
/-- The ACC system for the SM plus RHN. -/
@[simps!]
def SM (n : ) : ACCSystem where
numberLinear := 3
linearACCs := fun i =>
match i with
| 0 => @accGrav n
| 1 => accSU2
| 2 => accSU3
numberQuadratic := 0
quadraticACCs := by
intro i
exact Fin.elim0 i
cubicACC := accCube
namespace SM
variable {n : }
lemma gravSol (S : (SM n).LinSols) : accGrav S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 0
lemma SU2Sol (S : (SM n).LinSols) : accSU2 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 1
lemma SU3Sol (S : (SM n).LinSols) : accSU3 S.val = 0 := by
have hS := S.linearSol
simp at hS
exact hS 2
lemma cubeSol (S : (SM n).Sols) : accCube S.val = 0 := by
exact S.cubicSol
/-- An element of `charges` which satisfies the linear ACCs
gives us a element of `LinSols`. -/
def chargeToLinear (S : (SM n).charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) : (SM n).LinSols :=
⟨S, by
intro i
simp at i
match i with
| 0 => exact hGrav
| 1 => exact hSU2
| 2 => exact hSU3⟩
/-- An element of `LinSols` which satisfies the quadratic ACCs
gives us a element of `QuadSols`. -/
def linearToQuad (S : (SM n).LinSols) : (SM n).QuadSols :=
⟨S, by
intro i
exact Fin.elim0 i⟩
/-- An element of `QuadSols` which satisfies the quadratic ACCs
gives us a element of `Sols`. -/
def quadToAF (S : (SM n).QuadSols) (hc : accCube S.val = 0) :
(SM n).Sols := ⟨S, hc⟩
/-- An element of `charges` which satisfies the linear and quadratic ACCs
gives us a element of `QuadSols`. -/
def chargeToQuad (S : (SM n).charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
(SM n).QuadSols :=
linearToQuad $ chargeToLinear S hGrav hSU2 hSU3
/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs
gives us a element of `Sols`. -/
def chargeToAF (S : (SM n).charges) (hGrav : accGrav S = 0) (hSU2 : accSU2 S = 0)
(hSU3 : accSU3 S = 0) (hc : accCube S = 0) : (SM n).Sols :=
quadToAF (chargeToQuad S hGrav hSU2 hSU3) hc
/-- An element of `LinSols` which satisfies the quadratic and cubic ACCs
gives us a element of `Sols`. -/
def linearToAF (S : (SM n).LinSols)
(hc : accCube S.val = 0) : (SM n).Sols :=
quadToAF (linearToQuad S) hc
/-- The permutations acting on the ACC system corresponding to the SM with RHN. -/
def perm (n : ) : ACCSystemGroupAction (SM n) where
group := permGroup n
groupInst := inferInstance
rep := repCharges
linearInvariant := by
intro i
simp at i
match i with
| 0 => exact accGrav_invariant
| 1 => exact accSU2_invariant
| 2 => exact accSU3_invariant
quadInvariant := by
intro i
simp at i
exact Fin.elim0 i
cubicInvariant := accCube_invariant
end SM
end SMRHN