PhysLean/HepLean/PerturbationTheory/Algebras/CrAnAlgebra/SuperCommute.lean

448 lines
22 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
/-!
# Super Commute
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
namespace CrAnAlgebra
open StateAlgebra
/-!
## The super commutor on the CrAnAlgebra.
-/
open FieldStatistic
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
noncomputable def superCommute : 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra :=
Basis.constr ofCrAnListBasis fun φs =>
Basis.constr ofCrAnListBasis fun φs' =>
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs)
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
2025-01-23 15:06:11 +00:00
scoped[FieldSpecification.CrAnAlgebra] notation "[" φs "," φs' "]ₛca" => superCommute φs φs'
/-!
## The super commutor of different types of elements
-/
lemma superCommute_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofCrAnList φs']ₛca =
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
simp only [superCommute, Basis.constr_basis]
lemma superCommute_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnState φ, ofCrAnState φ']ₛca =
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
rw [superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append]
congr
rw [ofCrAnList_append]
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
lemma superCommute_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
conv_lhs => rw [ofStateList_sum]
rw [map_sum]
conv_lhs =>
enter [2, x]
rw [superCommute_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
ofCrAnList_append, ofCrAnList_append]
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
← Finset.sum_mul, ← ofStateList_sum]
simp
lemma superCommute_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
conv_lhs => rw [ofStateList_sum]
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, x]
rw [superCommute_ofCrAnList_ofStatesList]
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
lemma superCommute_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommute_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[anPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')]ₛca =
anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, _ =>
simp
2025-01-23 10:46:50 +00:00
| _, States.outAsymp φ =>
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
| States.position φ, States.position φ' =>
simp only [anPart_position, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.inAsymp φ' =>
simp only [anPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.inAsymp φ' =>
simp only [anPart_posAsymp, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[crPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')]ₛca =
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, _ =>
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
2025-01-23 10:46:50 +00:00
| _, States.inAsymp φ =>
simp only [anPart_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
| States.position φ, States.position φ' =>
simp only [crPart_position, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.outAsymp φ' =>
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.outAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[crPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')]ₛca =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
crPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, _ =>
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
2025-01-23 10:46:50 +00:00
| _, States.outAsymp φ =>
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul, sub_self]
| States.position φ, States.position φ' =>
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.inAsymp φ' =>
simp only [crPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.inAsymp φ' =>
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[anPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')]ₛca =
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
anPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, _ =>
simp
2025-01-23 10:46:50 +00:00
| _, States.inAsymp φ =>
simp
| States.position φ, States.position φ' =>
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.outAsymp φ' =>
simp only [anPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.outAsymp φ' =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[crPart (StateAlgebra.ofState φ), ofStateList φs]ₛca =
crPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
crPart (StateAlgebra.ofState φ) := by
match φ with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ =>
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.position φ =>
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ =>
simp
lemma superCommute_anPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[anPart (StateAlgebra.ofState φ), ofStateList φs]ₛca =
anPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofStateList φs * anPart (StateAlgebra.ofState φ) := by
match φ with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ =>
simp
| States.position φ =>
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
lemma superCommute_crPart_ofState (φ φ' : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[crPart (StateAlgebra.ofState φ), ofState φ']ₛca =
crPart (StateAlgebra.ofState φ) * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPart (StateAlgebra.ofState φ) := by
rw [← ofStateList_singleton, superCommute_crPart_ofStateList]
simp
lemma superCommute_anPart_ofState (φ φ' : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[anPart (StateAlgebra.ofState φ), ofState φ']ₛca =
anPart (StateAlgebra.ofState φ) * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPart (StateAlgebra.ofState φ) := by
rw [← ofStateList_singleton, superCommute_anPart_ofStateList]
simp
/-!
## Mul equal superCommute
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
multiplication with a sign plus the super commutor.
-/
lemma ofCrAnList_mul_ofCrAnList_eq_superCommute (φs φs' : List 𝓕.CrAnStates) :
ofCrAnList φs * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
2025-01-23 15:06:11 +00:00
+ [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList]
simp [ofCrAnList_append]
lemma ofCrAnState_mul_ofCrAnList_eq_superCommute (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
ofCrAnState φ * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnState φ
2025-01-23 15:06:11 +00:00
+ [ofCrAnState φ, ofCrAnList φs']ₛca := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommute]
simp
lemma ofStateList_mul_ofStateList_eq_superCommute (φs φs' : List 𝓕.States) :
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
2025-01-23 15:06:11 +00:00
+ [ofStateList φs, ofStateList φs']ₛca := by
rw [superCommute_ofStateList_ofStatesList]
simp
lemma ofState_mul_ofStateList_eq_superCommute (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
2025-01-23 15:06:11 +00:00
+ [ofState φ, ofStateList φs']ₛca := by
rw [superCommute_ofState_ofStatesList]
simp
lemma ofStateList_mul_ofState_eq_superCommute (φs : List 𝓕.States) (φ : 𝓕.States) :
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
2025-01-23 15:06:11 +00:00
+ [ofStateList φs, ofState φ]ₛca := by
rw [superCommute_ofStateList_ofState]
simp
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
2025-01-23 15:06:11 +00:00
[crPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')]ₛca := by
rw [superCommute_crPart_anPart]
simp
lemma anPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) +
2025-01-23 15:06:11 +00:00
[anPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')]ₛca := by
rw [superCommute_anPart_crPart]
simp
lemma crPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
2025-01-23 15:06:11 +00:00
[crPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')]ₛca := by
rw [superCommute_crPart_crPart]
simp
lemma anPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) +
2025-01-23 15:06:11 +00:00
[anPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')]ₛca := by
rw [superCommute_anPart_anPart]
simp
lemma ofCrAnList_mul_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
2025-01-23 15:06:11 +00:00
+ [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommute_ofCrAnList_ofStatesList]
simp
/-!
## Symmetry of the super commutor.
-/
lemma superCommute_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofCrAnList φs']ₛca =
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnList φs', ofCrAnList φs]ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList, superCommute_ofCrAnList_ofCrAnList, smul_sub]
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
lemma superCommute_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnState φ, ofCrAnState φ']ₛca =
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnState φ', ofCrAnState φ]ₛca := by
rw [superCommute_ofCrAnState_ofCrAnState, superCommute_ofCrAnState_ofCrAnState]
rw [smul_sub]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
/-!
## Splitting the super commutor on lists into sums.
-/
lemma superCommute_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofCrAnList (φ :: φs')]ₛca =
[ofCrAnList φs, ofCrAnState φ]ₛca * ofCrAnList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
2025-01-23 15:06:11 +00:00
• ofCrAnState φ * [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList]
conv_rhs =>
lhs
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofCrAnList_append, ofCrAnList_singleton, smul_mul_assoc,
mul_assoc, ← ofCrAnList_append]
conv_rhs =>
rhs
rw [superCommute_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp only [instCommGroup, map_mul, mul_comm]
lemma superCommute_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
2025-01-23 15:06:11 +00:00
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommute_ofCrAnList_ofStatesList]
conv_rhs =>
lhs
rw [← ofStateList_singleton, superCommute_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
← ofStateList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
smul_mul_assoc, mul_assoc]
conv_rhs =>
rhs
rw [superCommute_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
sub_add_sub_cancel, sub_right_inj]
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp [mul_comm]
2025-01-24 11:09:25 +00:00
/--
Within the creation and annihilation algebra, we have that
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
-/
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
2025-01-24 11:09:25 +00:00
(φs' : List 𝓕.CrAnStates) → [ofCrAnList φs, ofCrAnList φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
2025-01-23 15:06:11 +00:00
ofCrAnList (φs'.take n) * [ofCrAnList φs, ofCrAnState (φs'.get n)]ₛca *
ofCrAnList (φs'.drop (n + 1))
| [] => by
simp [← ofCrAnList_nil, superCommute_ofCrAnList_ofCrAnList]
| φ :: φs' => by
rw [superCommute_ofCrAnList_ofCrAnList_cons, superCommute_ofCrAnList_ofCrAnList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma superCommute_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofStateList φs']ₛca =
2025-01-24 11:09:25 +00:00
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
2025-01-23 15:06:11 +00:00
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
ofStateList (φs'.drop (n + 1))
| [] => by
simp only [superCommute_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
simp
| φ :: φs' => by
rw [superCommute_ofCrAnList_ofStateList_cons, superCommute_ofCrAnList_ofStateList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
end CrAnAlgebra
end FieldSpecification