PhysLean/HepLean/SpaceTime/WeylFermion/Basic.lean

401 lines
16 KiB
Text
Raw Normal View History

2024-09-15 19:01:34 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Meta.Informal
2024-10-03 07:15:48 +00:00
import HepLean.SpaceTime.SL2C.Basic
import Mathlib.RepresentationTheory.Rep
import HepLean.Tensors.Basic
import HepLean.SpaceTime.WeylFermion.Modules
import Mathlib.Logic.Equiv.TransferInstance
2024-09-15 19:01:34 -04:00
/-!
# Weyl fermions
2024-10-03 07:15:48 +00:00
A good reference for the material in this file is:
https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf
2024-09-17 05:23:09 -04:00
2024-09-15 19:01:34 -04:00
-/
2024-10-03 07:15:48 +00:00
namespace Fermion
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
/-- The vector space ^2 carrying the fundamental representation of SL(2,C).
In index notation corresponds to a Weyl fermion with indices ψ_a.-/
def leftHanded : Rep SL(2,) := Rep.of {
toFun := fun M => {
toFun := fun (ψ : LeftHandedModule) =>
LeftHandedModule.toFin2Equiv.symm (M.1 *ᵥ ψ.toFin2),
map_add' := by
intro ψ ψ'
simp [mulVec_add]
map_smul' := by
intro r ψ
simp [mulVec_smul]}
map_one' := by
ext i
simp
map_mul' := fun M N => by
simp only [SpecialLinearGroup.coe_mul]
ext1 x
simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply,
mulVec_mulVec]}
/-- The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ. In index notation corresponds to a Weyl fermion with indices ψ^a. -/
def altLeftHanded : Rep SL(2,) := Rep.of {
toFun := fun M => {
toFun := fun (ψ : AltLeftHandedModule) =>
AltLeftHandedModule.toFin2Equiv.symm ((M.1⁻¹)ᵀ *ᵥ ψ.toFin2),
map_add' := by
intro ψ ψ'
simp [mulVec_add]
map_smul' := by
intro r ψ
simp [mulVec_smul]}
map_one' := by
ext i
simp
map_mul' := fun M N => by
ext1 x
simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply,
LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq]
refine (congrFun (congrArg _ ?_) _)
rw [Matrix.mul_inv_rev]
exact transpose_mul _ _}
/-- The vector space ^2 carrying the conjugate representation of SL(2,C).
In index notation corresponds to a Weyl fermion with indices ψ_{dot a}.-/
def rightHanded : Rep SL(2,) := Rep.of {
toFun := fun M => {
toFun := fun (ψ : RightHandedModule) =>
RightHandedModule.toFin2Equiv.symm (M.1.map star *ᵥ ψ.toFin2),
map_add' := by
intro ψ ψ'
simp [mulVec_add]
map_smul' := by
intro r ψ
simp [mulVec_smul]}
map_one' := by
ext i
simp
map_mul' := fun M N => by
ext1 x
simp only [SpecialLinearGroup.coe_mul, RCLike.star_def, Matrix.map_mul, LinearMap.coe_mk,
AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply, mulVec_mulVec]}
/-- The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†.
In index notation this corresponds to a Weyl fermion with index `ψ^{dot a}`.-/
def altRightHanded : Rep SL(2,) := Rep.of {
toFun := fun M => {
toFun := fun (ψ : AltRightHandedModule) =>
AltRightHandedModule.toFin2Equiv.symm ((M.1⁻¹).conjTranspose *ᵥ ψ.toFin2),
map_add' := by
intro ψ ψ'
simp [mulVec_add]
map_smul' := by
intro r ψ
simp [mulVec_smul]}
map_one' := by
ext i
simp
map_mul' := fun M N => by
ext1 x
simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply,
LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq]
refine (congrFun (congrArg _ ?_) _)
rw [Matrix.mul_inv_rev]
exact conjTranspose_mul _ _}
2024-09-15 19:01:34 -04:00
/-!
## Equivalences between Weyl fermion vector spaces.
-/
2024-09-16 07:40:15 -04:00
2024-10-03 07:15:48 +00:00
/-- The morphism between the representation `leftHanded` and the representation
`altLeftHanded` defined by multiplying an element of
`leftHanded` by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`. -/
def leftHandedToAlt : leftHanded ⟶ altLeftHanded where
hom := {
toFun := fun ψ => AltLeftHandedModule.toFin2Equiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2),
map_add' := by
intro ψ ψ'
simp only [mulVec_add, LinearEquiv.map_add]
map_smul' := by
intro a ψ
simp only [mulVec_smul, LinearEquiv.map_smul]
rfl}
comm := by
intro M
refine LinearMap.ext (fun ψ => ?_)
change AltLeftHandedModule.toFin2Equiv.symm (!![0, 1; -1, 0] *ᵥ M.1 *ᵥ ψ.val) =
AltLeftHandedModule.toFin2Equiv.symm ((M.1⁻¹)ᵀ *ᵥ !![0, 1; -1, 0] *ᵥ ψ.val)
apply congrArg
rw [mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
refine congrFun (congrArg _ ?_) _
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
simp
lemma leftHandedToAlt_hom_apply (ψ : leftHanded) :
leftHandedToAlt.hom ψ =
AltLeftHandedModule.toFin2Equiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2) := rfl
/-- The morphism from `altLeftHanded` to
`leftHanded` defined by multiplying an element of
altLeftHandedWeyl by the matrix `εₐ₁ₐ₂ = !![0, -1; 1, 0]`. -/
def leftHandedAltTo : altLeftHanded ⟶ leftHanded where
hom := {
toFun := fun ψ =>
LeftHandedModule.toFin2Equiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2),
map_add' := by
intro ψ ψ'
simp only [map_add]
rw [mulVec_add, LinearEquiv.map_add]
map_smul' := by
intro a ψ
simp only [LinearEquiv.map_smul]
rw [mulVec_smul, LinearEquiv.map_smul]
rfl}
comm := by
intro M
refine LinearMap.ext (fun ψ => ?_)
change LeftHandedModule.toFin2Equiv.symm (!![0, -1; 1, 0] *ᵥ (M.1⁻¹)ᵀ *ᵥ ψ.val) =
LeftHandedModule.toFin2Equiv.symm (M.1 *ᵥ !![0, -1; 1, 0] *ᵥ ψ.val)
rw [EquivLike.apply_eq_iff_eq, mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe,
eta_fin_two M.1]
refine congrFun (congrArg _ ?_) _
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
simp
lemma leftHandedAltTo_hom_apply (ψ : altLeftHanded) :
leftHandedAltTo.hom ψ =
LeftHandedModule.toFin2Equiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2) := rfl
/-- The equivalence between the representation `leftHanded` and the representation
`altLeftHanded` defined by multiplying an element of
`leftHanded` by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`. -/
def leftHandedAltEquiv : leftHanded ≅ altLeftHanded where
hom := leftHandedToAlt
inv := leftHandedAltTo
hom_inv_id := by
ext ψ
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Action.id_hom,
ModuleCat.id_apply]
rw [leftHandedAltTo_hom_apply, leftHandedToAlt_hom_apply]
rw [AltLeftHandedModule.toFin2, LinearEquiv.apply_symm_apply, mulVec_mulVec]
rw [show (!![0, -1; (1 : ), 0] * !![0, 1; -1, 0]) = 1 by simpa using Eq.symm one_fin_two]
rw [one_mulVec]
rfl
inv_hom_id := by
ext ψ
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Action.id_hom,
ModuleCat.id_apply]
rw [leftHandedAltTo_hom_apply, leftHandedToAlt_hom_apply, LeftHandedModule.toFin2,
LinearEquiv.apply_symm_apply, mulVec_mulVec]
rw [show (!![0, (1 : ); -1, 0] * !![0, -1; 1, 0]) = 1 by simpa using Eq.symm one_fin_two]
rw [one_mulVec]
rfl
lemma leftHandedAltEquiv_hom_hom_apply (ψ : leftHanded) :
leftHandedAltEquiv.hom.hom ψ =
AltLeftHandedModule.toFin2Equiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2) := rfl
lemma leftHandedAltEquiv_inv_hom_apply (ψ : altLeftHanded) :
leftHandedAltEquiv.inv.hom ψ =
LeftHandedModule.toFin2Equiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2) := rfl
2024-09-15 19:01:34 -04:00
2024-09-23 08:08:40 +00:00
informal_definition rightHandedWeylAltEquiv where
math :≈ "The linear equiv between rightHandedWeyl and altRightHandedWeyl given
by multiplying an element of rightHandedWeyl by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`"
2024-10-03 07:15:48 +00:00
deps :≈ [``rightHanded, ``altRightHanded]
2024-09-15 19:01:34 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma rightHandedWeylAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightHandedWeylAltEquiv]
/-!
## Contraction of Weyl fermions.
-/
2024-10-03 07:15:48 +00:00
open CategoryTheory.MonoidalCategory
/-- The bi-linear map corresponding to contraction of a left-handed Weyl fermion with a
alt-left-handed Weyl fermion. -/
def leftAltBi : leftHanded →ₗ[] altLeftHanded →ₗ[] where
toFun ψ := {
toFun := fun φ => ψ.toFin2 ⬝ᵥ φ.toFin2,
map_add' := by
intro φ φ'
simp only [map_add]
rw [dotProduct_add]
map_smul' := by
intro r φ
simp only [LinearEquiv.map_smul]
rw [dotProduct_smul]
rfl}
map_add' ψ ψ':= by
refine LinearMap.ext (fun φ => ?_)
simp only [map_add, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply]
rw [add_dotProduct]
map_smul' r ψ := by
refine LinearMap.ext (fun φ => ?_)
simp only [LinearEquiv.map_smul, LinearMap.coe_mk, AddHom.coe_mk]
rw [smul_dotProduct]
rfl
/-- The bi-linear map corresponding to contraction of a alt-left-handed Weyl fermion with a
left-handed Weyl fermion. -/
def altLeftBi : altLeftHanded →ₗ[] leftHanded →ₗ[] where
toFun ψ := {
toFun := fun φ => ψ.toFin2 ⬝ᵥ φ.toFin2,
map_add' := by
intro φ φ'
simp only [map_add]
rw [dotProduct_add]
map_smul' := by
intro r φ
simp only [LinearEquiv.map_smul]
rw [dotProduct_smul]
rfl}
map_add' ψ ψ':= by
refine LinearMap.ext (fun φ => ?_)
simp only [map_add, add_dotProduct, vec2_dotProduct, Fin.isValue, LinearMap.coe_mk,
AddHom.coe_mk, LinearMap.add_apply]
map_smul' ψ ψ' := by
refine LinearMap.ext (fun φ => ?_)
simp only [_root_.map_smul, smul_dotProduct, vec2_dotProduct, Fin.isValue, smul_eq_mul,
LinearMap.coe_mk, AddHom.coe_mk, RingHom.id_apply, LinearMap.smul_apply]
/-- The linear map from leftHandedWeyl ⊗ altLeftHandedWeyl to given by
2024-09-23 08:08:40 +00:00
summing over components of leftHandedWeyl and altLeftHandedWeyl in the
2024-10-03 07:15:48 +00:00
standard basis (i.e. the dot product).
Physically, the contraction of a left-handed Weyl fermion with a alt-left-handed Weyl fermion.
In index notation this is ψ_a φ^a. -/
def leftAltContraction : leftHanded ⊗ altLeftHanded ⟶ 𝟙_ (Rep SL(2,)) where
hom := TensorProduct.lift leftAltBi
comm M := by
apply TensorProduct.ext'
intro ψ φ
change (M.1 *ᵥ ψ.toFin2) ⬝ᵥ (M.1⁻¹ᵀ *ᵥ φ.toFin2) = ψ.toFin2 ⬝ᵥ φ.toFin2
rw [dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
simp
@[simp]
lemma leftAltContraction_hom_tmul (ψ : leftHanded) (φ : altLeftHanded) :
leftAltContraction.hom (ψ ⊗ₜ φ) = ψ.toFin2 ⬝ᵥ φ.toFin2 := by
rw [leftAltContraction]
erw [TensorProduct.lift.tmul]
rfl
/-- The linear map from altLeftHandedWeyl ⊗ leftHandedWeyl to given by
2024-09-23 08:08:40 +00:00
summing over components of altLeftHandedWeyl and leftHandedWeyl in the
2024-10-03 07:15:48 +00:00
standard basis (i.e. the dot product).
Physically, the contraction of a alt-left-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^a ψ_a. -/
def altLeftContraction : altLeftHanded ⊗ leftHanded ⟶ 𝟙_ (Rep SL(2,)) where
hom := TensorProduct.lift altLeftBi
comm M := by
apply TensorProduct.ext'
intro φ ψ
change (M.1⁻¹ᵀ *ᵥ φ.toFin2) ⬝ᵥ (M.1 *ᵥ ψ.toFin2) = φ.toFin2 ⬝ᵥ ψ.toFin2
rw [dotProduct_mulVec, mulVec_transpose, vecMul_vecMul]
simp
@[simp]
lemma altLeftContraction_hom_tmul (φ : altLeftHanded) (ψ : leftHanded) :
altLeftContraction.hom (φ ⊗ₜ ψ) = φ.toFin2 ⬝ᵥ ψ.toFin2 := by
rw [altLeftContraction]
erw [TensorProduct.lift.tmul]
rfl
lemma leftAltContraction_apply_symm (ψ : leftHanded) (φ : altLeftHanded) :
leftAltContraction.hom (ψ ⊗ₜ φ) = altLeftContraction.hom (φ ⊗ₜ ψ) := by
rw [altLeftContraction_hom_tmul, leftAltContraction_hom_tmul]
exact dotProduct_comm ψ.toFin2 φ.toFin2
/-- A manifestation of the statement that `ψ ψ' = - ψ' ψ` where `ψ` and `ψ'`
are `leftHandedWeyl`. -/
lemma leftAltContraction_apply_leftHandedAltEquiv (ψ ψ' : leftHanded) :
leftAltContraction.hom (ψ ⊗ₜ leftHandedAltEquiv.hom.hom ψ') =
- leftAltContraction.hom (ψ' ⊗ₜ leftHandedAltEquiv.hom.hom ψ) := by
rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul,
leftHandedAltEquiv_hom_hom_apply, leftHandedAltEquiv_hom_hom_apply]
simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit,
CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse,
Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj,
cons_mulVec, cons_dotProduct, zero_mul, one_mul, dotProduct_empty, add_zero, zero_add, neg_mul,
empty_mulVec, LinearEquiv.apply_symm_apply, dotProduct_cons, mul_neg, neg_add_rev, neg_neg]
ring
/-- A manifestation of the statement that `φ φ' = - φ' φ` where `φ` and `φ'` are
`altLeftHandedWeyl`. -/
lemma leftAltContraction_apply_leftHandedAltEquiv_inv (φ φ' : altLeftHanded) :
leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ ⊗ₜ φ') =
- leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ' ⊗ₜ φ) := by
rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul,
leftHandedAltEquiv_inv_hom_apply, leftHandedAltEquiv_inv_hom_apply]
simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit,
CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse,
Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj,
cons_mulVec, cons_dotProduct, zero_mul, neg_mul, one_mul, dotProduct_empty, add_zero, zero_add,
empty_mulVec, LinearEquiv.apply_symm_apply, neg_add_rev, neg_neg]
ring
2024-09-17 05:23:09 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma leftAltWeylContraction_symm_altLeftWeylContraction where
math :≈ "The linear map altLeftWeylContraction is leftAltWeylContraction composed
2024-09-17 05:23:09 -04:00
with the braiding of the tensor product."
2024-10-03 07:15:48 +00:00
deps :≈ [``leftAltContraction, ``altLeftContraction]
2024-09-17 05:23:09 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma altLeftWeylContraction_invariant where
math :≈ "The contraction altLeftWeylContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
2024-10-03 07:15:48 +00:00
deps :≈ [``altLeftContraction]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_definition rightAltWeylContraction where
math :≈ "The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to given by
summing over components of rightHandedWeyl and altRightHandedWeyl in the
2024-09-17 07:08:03 -04:00
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is ψ_{dot a} φ^{dot a}."
2024-10-03 07:15:48 +00:00
deps :≈ [``rightHanded, ``altRightHanded]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma rightAltWeylContraction_invariant where
math :≈ "The contraction rightAltWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightAltWeylContraction]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_definition altRightWeylContraction where
math :≈ "The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to given by
summing over components of altRightHandedWeyl and rightHandedWeyl in the
2024-09-17 07:08:03 -04:00
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^{dot a} ψ_{dot a}."
2024-10-03 07:15:48 +00:00
deps :≈ [``rightHanded, ``altRightHanded]
2024-09-17 07:08:03 -04:00
2024-09-23 08:08:40 +00:00
informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where
math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed
2024-09-17 07:08:03 -04:00
with the braiding of the tensor product."
2024-09-23 08:08:40 +00:00
deps :≈ [``rightAltWeylContraction, ``altRightWeylContraction]
informal_lemma altRightWeylContraction_invariant where
math :≈ "The contraction altRightWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``altRightWeylContraction]
2024-09-17 07:08:03 -04:00
2024-10-03 07:15:48 +00:00
end
2024-09-23 08:08:40 +00:00
end Fermion