PhysLean/HepLean/PerturbationTheory/WickContraction/Uncontracted.lean

109 lines
3.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Basic
/-!
# Uncontracted elements
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
2025-02-07 06:58:41 +00:00
/-- For a Wick contraction `c`, `c.uncontracted` is defined as the finset of elements of `Fin n`
which are not in any contracted pair. -/
def uncontracted : Finset (Fin n) := Finset.filter (fun i => c.getDual? i = none) (Finset.univ)
lemma congr_uncontracted {n m : } (c : WickContraction n) (h : n = m) :
(c.congr h).uncontracted = Finset.map (finCongr h).toEmbedding c.uncontracted := by
subst h
simp
2025-01-31 16:02:02 +00:00
lemma getDual?_eq_none_iff_mem_uncontracted (i : Fin n) :
c.getDual? i = none ↔ i ∈ c.uncontracted := by
simp [uncontracted]
/-- The equivalence of `Option c.uncontracted` for two propositionally equal Wick contractions. -/
def uncontractedCongr {c c': WickContraction n} (h : c = c') :
Option c.uncontracted ≃ Option c'.uncontracted :=
Equiv.optionCongr (Equiv.subtypeEquivRight (by rw [h]; simp))
@[simp]
lemma uncontractedCongr_none {c c': WickContraction n} (h : c = c') :
(uncontractedCongr h) none = none := by
simp [uncontractedCongr]
@[simp]
lemma uncontractedCongr_some {c c': WickContraction n} (h : c = c') (i : c.uncontracted) :
(uncontractedCongr h) (some i) = some (Equiv.subtypeEquivRight (by rw [h]; simp) i) := by
simp [uncontractedCongr]
lemma mem_uncontracted_iff_not_contracted (i : Fin n) :
i ∈ c.uncontracted ↔ ∀ p ∈ c.1, i ∉ p := by
simp only [uncontracted, getDual?, Finset.mem_filter, Finset.mem_univ, true_and]
apply Iff.intro
· intro h p hp
have hp := c.2.1 p hp
rw [Finset.card_eq_two] at hp
obtain ⟨a, b, ha, hb, hab⟩ := hp
rw [Fin.find_eq_none_iff] at h
by_contra hn
simp only [Finset.mem_insert, Finset.mem_singleton] at hn
rcases hn with hn | hn
· subst hn
exact h b hp
· subst hn
rw [Finset.pair_comm] at hp
exact h a hp
· intro h
rw [Fin.find_eq_none_iff]
by_contra hn
simp only [not_forall, Decidable.not_not] at hn
obtain ⟨j, hj⟩ := hn
apply h {i, j} hj
simp
2025-01-31 16:02:02 +00:00
lemma mem_uncontracted_empty (i : Fin n) : i ∈ empty.uncontracted := by
rw [@mem_uncontracted_iff_not_contracted]
intro p hp
simp [empty] at hp
@[simp]
lemma getDual?_empty_eq_none (i : Fin n) : empty.getDual? i = none := by
simpa [uncontracted] using mem_uncontracted_empty i
@[simp]
lemma uncontracted_empty {n : } : (@empty n).uncontracted = Finset.univ := by
2025-02-03 05:39:48 +00:00
simp [uncontracted]
2025-01-31 16:02:02 +00:00
2025-02-01 11:51:06 +00:00
lemma uncontracted_card_le (c : WickContraction n) : c.uncontracted.card ≤ n := by
2025-02-03 05:39:48 +00:00
simp only [uncontracted]
2025-02-01 11:51:06 +00:00
apply le_of_le_of_eq (Finset.card_filter_le _ _)
simp
lemma uncontracted_card_eq_iff (c : WickContraction n) :
c.uncontracted.card = n ↔ c = empty := by
apply Iff.intro
· intro h
have hc : c.uncontracted.card = (Finset.univ (α := Fin n)).card := by simpa using h
simp only [uncontracted] at hc
rw [Finset.card_filter_eq_iff] at hc
by_contra hn
have hc' := exists_pair_of_not_eq_empty c hn
obtain ⟨i, j, hij⟩ := hc'
have hci : c.getDual? i = some j := by
rw [@getDual?_eq_some_iff_mem]
exact hij
simp_all
· intro h
subst h
simp
end WickContraction