PhysLean/HepLean/FeynmanDiagrams/Momentum.lean

87 lines
2.6 KiB
Text
Raw Normal View History

2024-06-18 15:34:57 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
2024-06-19 07:45:19 -04:00
import Mathlib.Data.Real.Basic
2024-06-18 15:34:57 -04:00
import Mathlib.Algebra.Category.ModuleCat.Basic
/-!
# Momentum in Feynman diagrams
The aim of this file is to associate with each half-edge of a Feynman diagram a momentum,
and constrain the momentums based conservation at each vertex and edge.
2024-06-19 07:45:19 -04:00
The number of loops of a Feynman diagram is related to the dimension of the resulting
vector space.
2024-06-18 15:34:57 -04:00
-/
namespace FeynmanDiagram
open CategoryTheory
open PreFeynmanRule
variable {P : PreFeynmanRule} (F : FeynmanDiagram P)
variable (d : )
/-- The momentum space for a `d`-dimensional field theory for a single particle.
TODO: Move this definition, and define it as a four-vector. -/
def SingleMomentumSpace : Type := Fin d →
instance : AddCommGroup (SingleMomentumSpace d) := Pi.addCommGroup
2024-06-19 07:45:19 -04:00
instance : Module (SingleMomentumSpace d) := Pi.module _ _ _
2024-06-18 15:34:57 -04:00
/-- The type which asociates to each half-edge a `d`-dimensional vector.
This is to be interpreted as the momentum associated to that half-edge flowing from the
corresponding `edge` to the corresponding `vertex`. So all momentums flow into vertices. -/
def FullMomentumSpace : Type := F.𝓱𝓔 → Fin d →
instance : AddCommGroup (F.FullMomentumSpace d) := Pi.addCommGroup
2024-06-19 07:45:19 -04:00
instance : Module (F.FullMomentumSpace d) := Pi.module _ _ _
2024-06-18 15:34:57 -04:00
/-- The linear map taking a half-edge to its momentum.
(defined as flowing from the `edge` to the vertex.) -/
def toHalfEdgeMomentum (i : F.𝓱𝓔) : F.FullMomentumSpace d →ₗ[] SingleMomentumSpace d where
toFun x := x i
map_add' x y := by rfl
map_smul' c x := by rfl
namespace Hom
variable {F G : FeynmanDiagram P}
variable (f : F ⟶ G)
/-- The linear map induced by a morphism of Feynman diagrams. -/
def toLinearMap : G.FullMomentumSpace d →ₗ[] F.FullMomentumSpace d where
toFun x := x ∘ f.𝓱𝓔
map_add' x y := by rfl
map_smul' c x := by rfl
end Hom
/-- The contravariant functor from Feynman diagrams to Modules over ``. -/
noncomputable def funcFullMomentumSpace : FeynmanDiagram P ⥤ (ModuleCat )ᵒᵖ where
obj F := Opposite.op $ ModuleCat.of (F.FullMomentumSpace d)
map f := Opposite.op $ Hom.toLinearMap d f
/-!
## Edge constraints
2024-06-19 07:45:19 -04:00
There is a linear map from `F.FullMomentumSpace` to `F.EdgeMomentumSpace`, induced
by the constraints at each edge.
We impose the constraint that we live in the kernal of this linear map.
A similar result is true for the vertex constraints.
2024-06-18 15:34:57 -04:00
-/
2024-06-19 07:45:19 -04:00
2024-06-18 15:34:57 -04:00
end FeynmanDiagram