PhysLean/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean

713 lines
24 KiB
Text
Raw Normal View History

2024-04-18 11:09:21 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
2024-07-12 16:39:44 -04:00
Released under Apache 2.0 license as described in the file LICENSE.
2024-04-18 11:09:21 -04:00
Authors: Joseph Tooby-Smith
-/
2024-07-30 08:07:47 -04:00
import HepLean.AnomalyCancellation.PureU1.Sorts
2024-04-18 11:09:21 -04:00
import HepLean.AnomalyCancellation.PureU1.BasisLinear
import HepLean.AnomalyCancellation.PureU1.VectorLike
import Mathlib.Logic.Equiv.Fin
/-!
# Basis of `LinSols` in the odd case
2024-05-20 00:19:24 +02:00
We give a basis of `LinSols` in the odd case. This basis has the special property
2024-04-18 11:09:21 -04:00
that splits into two planes on which every point is a solution to the ACCs.
-/
universe v u
open Nat
2024-07-12 11:23:02 -04:00
open Finset
2024-04-18 11:09:21 -04:00
open BigOperators
namespace PureU1
variable {n : }
namespace VectorLikeOddPlane
lemma split_odd! (n : ) : (1 + n) + n = 2 * n +1 := by
omega
lemma split_adda (n : ) : ((1+n)+1) + n.succ = 2 * n.succ + 1 := by
omega
section theDeltas
2024-11-28 11:18:25 +00:00
/-- The inclusion of `Fin n` into `Fin ((n + 1) + n)` via the first `n`.
This is then casted to `Fin (2 * n + 1)`. -/
2024-04-18 11:09:21 -04:00
def δ₁ (j : Fin n) : Fin (2 * n + 1) :=
Fin.cast (split_odd n) (Fin.castAdd n (Fin.castAdd 1 j))
2024-11-28 11:18:25 +00:00
/-- The inclusion of `Fin n` into `Fin ((n + 1) + n)` via the second `n`.
This is then casted to `Fin (2 * n + 1)`. -/
2024-04-18 11:09:21 -04:00
def δ₂ (j : Fin n) : Fin (2 * n + 1) :=
Fin.cast (split_odd n) (Fin.natAdd (n+1) j)
2024-11-28 11:18:25 +00:00
/-- The element representing `1` in `Fin ((n + 1) + n)`.
This is then casted to `Fin (2 * n + 1)`. -/
2024-04-18 11:09:21 -04:00
def δ₃ : Fin (2 * n + 1) :=
Fin.cast (split_odd n) (Fin.castAdd n (Fin.natAdd n 1))
2024-11-28 11:18:25 +00:00
/-- The inclusion of `Fin n` into `Fin (1 + n + n)` via the first `n`.
This is then casted to `Fin (2 * n + 1)`. -/
2024-04-18 11:09:21 -04:00
def δ!₁ (j : Fin n) : Fin (2 * n + 1) :=
Fin.cast (split_odd! n) (Fin.castAdd n (Fin.natAdd 1 j))
2024-11-28 11:18:25 +00:00
/-- The inclusion of `Fin n` into `Fin (1 + n + n)` via the second `n`.
This is then casted to `Fin (2 * n + 1)`. -/
2024-04-18 11:09:21 -04:00
def δ!₂ (j : Fin n) : Fin (2 * n + 1) :=
Fin.cast (split_odd! n) (Fin.natAdd (1 + n) j)
2024-11-28 11:18:25 +00:00
/-- The element representing the `1` in `Fin (1 + n + n)`.
This is then casted to `Fin (2 * n + 1)`. -/
2024-04-18 11:09:21 -04:00
def δ!₃ : Fin (2 * n + 1) :=
Fin.cast (split_odd! n) (Fin.castAdd n (Fin.castAdd n 1))
2024-11-28 11:18:25 +00:00
/-- The element representing the first `1` in `Fin (1 + n + 1 + n.succ)` casted
to `Fin (2 * n.succ + 1)`. -/
2024-04-18 11:09:21 -04:00
def δa₁ : Fin (2 * n.succ + 1) :=
Fin.cast (split_adda n) (Fin.castAdd n.succ (Fin.castAdd 1 (Fin.castAdd n 1)))
2024-11-28 11:18:25 +00:00
/-- The inclusion of `Fin n` into `Fin (1 + n + 1 + n.succ)` via the first `n` and casted
to `Fin (2 * n.succ + 1)`. -/
2024-04-18 11:09:21 -04:00
def δa₂ (j : Fin n) : Fin (2 * n.succ + 1) :=
Fin.cast (split_adda n) (Fin.castAdd n.succ (Fin.castAdd 1 (Fin.natAdd 1 j)))
2024-11-28 11:18:25 +00:00
/-- The element representing the second `1` in `Fin (1 + n + 1 + n.succ)` casted
to `2 * n.succ + 1`. -/
2024-04-18 11:09:21 -04:00
def δa₃ : Fin (2 * n.succ + 1) :=
Fin.cast (split_adda n) (Fin.castAdd n.succ (Fin.natAdd (1+n) 1))
2024-11-28 11:18:25 +00:00
/-- The inclusion of `Fin n.succ` into `Fin (1 + n + 1 + n.succ)` via the `n.succ` and casted
to `Fin (2 * n.succ + 1)`. -/
2024-04-18 11:09:21 -04:00
def δa₄ (j : Fin n.succ) : Fin (2 * n.succ + 1) :=
Fin.cast (split_adda n) (Fin.natAdd ((1+n)+1) j)
2024-11-28 11:18:25 +00:00
lemma δa₁_δ₁ : @δa₁ n = δ₁ 0 := Fin.rev_inj.mp rfl
2024-04-18 11:09:21 -04:00
2024-11-28 11:18:25 +00:00
lemma δa₁_δ!₃ : @δa₁ n = δ!₃ := rfl
2024-04-18 11:09:21 -04:00
lemma δa₂_δ₁ (j : Fin n) : δa₂ j = δ₁ j.succ := by
rw [Fin.ext_iff]
2024-09-04 09:17:37 -04:00
simp only [succ_eq_add_one, δa₂, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, δ₁, Fin.val_succ]
2024-08-30 11:52:27 -04:00
exact Nat.add_comm 1 ↑j
2024-04-18 11:09:21 -04:00
lemma δa₂_δ!₁ (j : Fin n) : δa₂ j = δ!₁ j.castSucc := by
2024-08-30 10:43:29 -04:00
rfl
2024-04-18 11:09:21 -04:00
lemma δa₃_δ₃ : @δa₃ n = δ₃ := by
rw [Fin.ext_iff]
2024-09-04 09:17:37 -04:00
simp only [succ_eq_add_one, δa₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd,
2024-11-02 08:50:17 +00:00
Fin.val_eq_zero, add_zero, δ₃]
2024-08-30 11:52:27 -04:00
exact Nat.add_comm 1 n
2024-04-18 11:09:21 -04:00
lemma δa₃_δ!₁ : δa₃ = δ!₁ (Fin.last n) := by
rfl
lemma δa₄_δ₂ (j : Fin n.succ) : δa₄ j = δ₂ j := by
rw [Fin.ext_iff]
2024-09-04 09:17:37 -04:00
simp only [succ_eq_add_one, δa₄, Fin.coe_cast, Fin.coe_natAdd, δ₂, add_left_inj]
2024-08-30 11:52:27 -04:00
exact Nat.add_comm 1 n
2024-04-18 11:09:21 -04:00
lemma δa₄_δ!₂ (j : Fin n.succ) : δa₄ j = δ!₂ j := by
rw [Fin.ext_iff]
2024-08-30 10:43:29 -04:00
rfl
2024-04-18 11:09:21 -04:00
lemma δ₂_δ!₂ (j : Fin n) : δ₂ j = δ!₂ j := by
rw [Fin.ext_iff]
2024-09-04 09:17:37 -04:00
simp only [δ₂, Fin.coe_cast, Fin.coe_natAdd, δ!₂, add_left_inj]
2024-08-30 11:52:27 -04:00
exact Nat.add_comm n 1
2024-04-18 11:09:21 -04:00
2024-07-12 11:23:02 -04:00
lemma sum_δ (S : Fin (2 * n + 1) → ) :
2024-04-18 11:09:21 -04:00
∑ i, S i = S δ₃ + ∑ i : Fin n, ((S ∘ δ₁) i + (S ∘ δ₂) i) := by
have h1 : ∑ i, S i = ∑ i : Fin (n + 1 + n), S (Fin.cast (split_odd n) i) := by
2024-06-07 08:41:49 -04:00
rw [Finset.sum_equiv (Fin.castOrderIso (split_odd n)).symm.toEquiv]
2024-08-30 11:52:27 -04:00
· intro i
simp only [mem_univ, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv]
· exact fun _ _ => rfl
2024-04-18 11:09:21 -04:00
rw [h1]
rw [Fin.sum_univ_add, Fin.sum_univ_add]
2024-04-18 11:20:15 -04:00
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
2024-04-18 11:09:21 -04:00
nth_rewrite 2 [add_comm]
rw [add_assoc]
rw [Finset.sum_add_distrib]
rfl
2024-07-12 11:23:02 -04:00
lemma sum_δ! (S : Fin (2 * n + 1) → ) :
2024-04-18 11:09:21 -04:00
∑ i, S i = S δ!₃ + ∑ i : Fin n, ((S ∘ δ!₁) i + (S ∘ δ!₂) i) := by
have h1 : ∑ i, S i = ∑ i : Fin ((1+n)+n), S (Fin.cast (split_odd! n) i) := by
2024-06-07 08:41:49 -04:00
rw [Finset.sum_equiv (Fin.castOrderIso (split_odd! n)).symm.toEquiv]
2024-08-30 11:52:27 -04:00
· intro i
simp only [mem_univ, Fin.castOrderIso, RelIso.coe_fn_toEquiv]
· exact fun _ _ => rfl
rw [h1, Fin.sum_univ_add, Fin.sum_univ_add]
2024-04-18 11:20:15 -04:00
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
2024-08-30 11:52:27 -04:00
rw [add_assoc, Finset.sum_add_distrib]
2024-04-18 11:09:21 -04:00
rfl
end theDeltas
section theBasisVectors
/-- The first part of the basis as charge assignments. -/
def basisAsCharges (j : Fin n) : (PureU1 (2 * n + 1)).Charges :=
2024-04-18 11:09:21 -04:00
fun i =>
if i = δ₁ j then
1
else
if i = δ₂ j then
- 1
else
0
/-- The second part of the basis as charge assignments. -/
def basis!AsCharges (j : Fin n) : (PureU1 (2 * n + 1)).Charges :=
2024-04-18 11:09:21 -04:00
fun i =>
if i = δ!₁ j then
1
else
if i = δ!₂ j then
- 1
else
0
lemma basis_on_δ₁_self (j : Fin n) : basisAsCharges j (δ₁ j) = 1 := by
simp [basisAsCharges]
lemma basis!_on_δ!₁_self (j : Fin n) : basis!AsCharges j (δ!₁ j) = 1 := by
simp [basis!AsCharges]
lemma basis_on_δ₁_other {k j : Fin n} (h : k ≠ j) :
basisAsCharges k (δ₁ j) = 0 := by
2024-09-04 09:17:37 -04:00
simp only [basisAsCharges, PureU1_numberCharges]
simp only [δ₁, δ₂]
2024-04-18 11:09:21 -04:00
split
2024-08-20 15:27:45 -04:00
· rename_i h1
rw [Fin.ext_iff] at h1
simp_all
rw [Fin.ext_iff] at h
simp_all
· split
· rename_i h1 h2
simp_all
rw [Fin.ext_iff] at h2
2024-09-04 09:17:37 -04:00
simp only [Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd] at h2
2024-08-20 15:27:45 -04:00
omega
· rfl
2024-04-18 11:09:21 -04:00
lemma basis!_on_δ!₁_other {k j : Fin n} (h : k ≠ j) :
basis!AsCharges k (δ!₁ j) = 0 := by
2024-09-04 09:17:37 -04:00
simp only [basis!AsCharges, PureU1_numberCharges]
simp only [δ!₁, δ!₂]
2024-04-18 11:09:21 -04:00
split
2024-08-20 15:27:45 -04:00
· rename_i h1
rw [Fin.ext_iff] at h1
simp_all
rw [Fin.ext_iff] at h
simp_all
· split
· rename_i h1 h2
simp_all
rw [Fin.ext_iff] at h2
2024-09-04 09:17:37 -04:00
simp only [Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd] at h2
2024-08-20 15:27:45 -04:00
omega
rfl
2024-04-18 11:09:21 -04:00
2024-07-12 11:23:02 -04:00
lemma basis_on_other {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j ≠ δ₁ k) (h2 : j ≠ δ₂ k) :
2024-04-18 11:09:21 -04:00
basisAsCharges k j = 0 := by
2024-09-04 09:17:37 -04:00
simp only [basisAsCharges, PureU1_numberCharges]
2024-04-18 11:09:21 -04:00
simp_all only [ne_eq, ↓reduceIte]
2024-07-12 11:23:02 -04:00
lemma basis!_on_other {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j ≠ δ!₁ k) (h2 : j ≠ δ!₂ k) :
2024-04-18 11:09:21 -04:00
basis!AsCharges k j = 0 := by
2024-09-04 09:17:37 -04:00
simp only [basis!AsCharges, PureU1_numberCharges]
2024-04-18 11:09:21 -04:00
simp_all only [ne_eq, ↓reduceIte]
lemma basis_δ₂_eq_minus_δ₁ (j i : Fin n) :
basisAsCharges j (δ₂ i) = - basisAsCharges j (δ₁ i) := by
2024-09-04 09:17:37 -04:00
simp only [basisAsCharges, PureU1_numberCharges, δ₂, δ₁]
2024-04-18 11:09:21 -04:00
split <;> split
any_goals split
any_goals split
any_goals rfl
all_goals rename_i h1 h2
all_goals rw [Fin.ext_iff] at h1 h2
all_goals simp_all
all_goals rename_i h3
all_goals rw [Fin.ext_iff] at h3
all_goals simp_all
all_goals omega
lemma basis!_δ!₂_eq_minus_δ!₁ (j i : Fin n) :
basis!AsCharges j (δ!₂ i) = - basis!AsCharges j (δ!₁ i) := by
2024-09-04 09:17:37 -04:00
simp only [basis!AsCharges, PureU1_numberCharges, δ!₂, δ!₁]
2024-04-18 11:09:21 -04:00
split <;> split
any_goals split
any_goals split
any_goals rfl
all_goals rename_i h1 h2
all_goals rw [Fin.ext_iff] at h1 h2
all_goals simp_all
2024-08-20 15:27:45 -04:00
· subst h1
exact Fin.elim0 i
2024-04-18 11:09:21 -04:00
all_goals rename_i h3
all_goals rw [Fin.ext_iff] at h3
all_goals simp_all
all_goals omega
lemma basis_on_δ₂_self (j : Fin n) : basisAsCharges j (δ₂ j) = - 1 := by
rw [basis_δ₂_eq_minus_δ₁, basis_on_δ₁_self]
lemma basis!_on_δ!₂_self (j : Fin n) : basis!AsCharges j (δ!₂ j) = - 1 := by
rw [basis!_δ!₂_eq_minus_δ!₁, basis!_on_δ!₁_self]
lemma basis_on_δ₂_other {k j : Fin n} (h : k ≠ j) : basisAsCharges k (δ₂ j) = 0 := by
rw [basis_δ₂_eq_minus_δ₁, basis_on_δ₁_other h]
rfl
lemma basis!_on_δ!₂_other {k j : Fin n} (h : k ≠ j) : basis!AsCharges k (δ!₂ j) = 0 := by
rw [basis!_δ!₂_eq_minus_δ!₁, basis!_on_δ!₁_other h]
rfl
lemma basis_on_δ₃ (j : Fin n) : basisAsCharges j δ₃ = 0 := by
2024-09-04 09:17:37 -04:00
simp only [basisAsCharges, PureU1_numberCharges]
2024-04-18 11:09:21 -04:00
split <;> rename_i h
2024-08-20 15:27:45 -04:00
· rw [Fin.ext_iff] at h
2024-11-02 08:50:17 +00:00
simp only [δ₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero,
2024-09-04 09:17:37 -04:00
add_zero, δ₁] at h
2024-08-20 15:27:45 -04:00
omega
· split <;> rename_i h2
· rw [Fin.ext_iff] at h2
2024-11-02 08:50:17 +00:00
simp only [δ₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero,
2024-09-04 09:17:37 -04:00
add_zero, δ₂] at h2
2024-08-20 15:27:45 -04:00
omega
· rfl
2024-04-18 11:09:21 -04:00
lemma basis!_on_δ!₃ (j : Fin n) : basis!AsCharges j δ!₃ = 0 := by
2024-09-04 09:17:37 -04:00
simp only [basis!AsCharges, PureU1_numberCharges]
2024-04-18 11:09:21 -04:00
split <;> rename_i h
2024-08-20 15:27:45 -04:00
· rw [Fin.ext_iff] at h
2024-11-02 08:50:17 +00:00
simp only [δ!₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.val_eq_zero, δ!₁,
2024-09-04 09:17:37 -04:00
Fin.coe_natAdd] at h
2024-08-20 15:27:45 -04:00
omega
· split <;> rename_i h2
· rw [Fin.ext_iff] at h2
2024-11-02 08:50:17 +00:00
simp only [δ!₃, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.val_eq_zero, δ!₂,
2024-09-04 09:17:37 -04:00
Fin.coe_natAdd] at h2
2024-08-20 15:27:45 -04:00
omega
· rfl
2024-04-18 11:09:21 -04:00
lemma basis_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basisAsCharges j) = 0 := by
rw [accGrav]
2024-04-18 11:20:15 -04:00
simp only [LinearMap.coe_mk, AddHom.coe_mk]
2024-04-18 11:09:21 -04:00
erw [sum_δ]
simp [basis_δ₂_eq_minus_δ₁, basis_on_δ₃]
lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basis!AsCharges j) = 0 := by
rw [accGrav]
2024-04-18 11:20:15 -04:00
simp only [LinearMap.coe_mk, AddHom.coe_mk]
2024-04-18 11:09:21 -04:00
rw [sum_δ!, basis!_on_δ!₃]
simp [basis!_δ!₂_eq_minus_δ!₁]
/-- The first part of the basis as `LinSols`. -/
@[simps!]
def basis (j : Fin n) : (PureU1 (2 * n + 1)).LinSols :=
⟨basisAsCharges j, by
intro i
2024-09-04 09:17:37 -04:00
simp only [PureU1_numberLinear] at i
2024-04-18 11:09:21 -04:00
match i with
| 0 =>
exact basis_linearACC j⟩
/-- The second part of the basis as `LinSols`. -/
@[simps!]
def basis! (j : Fin n) : (PureU1 (2 * n + 1)).LinSols :=
⟨basis!AsCharges j, by
intro i
2024-09-04 09:17:37 -04:00
simp only [PureU1_numberLinear] at i
2024-04-18 11:09:21 -04:00
match i with
| 0 =>
exact basis!_linearACC j⟩
/-- The whole basis as `LinSols`. -/
def basisa : Fin n ⊕ Fin n → (PureU1 (2 * n + 1)).LinSols := fun i =>
match i with
| .inl i => basis i
| .inr i => basis! i
end theBasisVectors
/-- Swapping the elements δ!₁ j and δ!₂ j is equivalent to adding a vector basis!AsCharges j. -/
lemma swap!_as_add {S S' : (PureU1 (2 * n + 1)).LinSols} (j : Fin n)
(hS : ((FamilyPermutations (2 * n + 1)).linSolRep
2024-07-12 11:23:02 -04:00
(pairSwap (δ!₁ j) (δ!₂ j))) S = S') :
2024-04-18 11:09:21 -04:00
S'.val = S.val + (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j := by
funext i
rw [← hS, FamilyPermutations_anomalyFreeLinear_apply]
2024-07-12 11:23:02 -04:00
by_cases hi : i = δ!₁ j
2024-08-20 15:27:45 -04:00
· subst hi
simp [HSMul.hSMul, basis!_on_δ!₁_self, pairSwap_inv_fst]
· by_cases hi2 : i = δ!₂ j
· subst hi2
simp [HSMul.hSMul,basis!_on_δ!₂_self, pairSwap_inv_snd]
2024-09-04 09:17:37 -04:00
· simp only [Equiv.invFun_as_coe, HSMul.hSMul, ACCSystemCharges.chargesAddCommMonoid_add,
ACCSystemCharges.chargesModule_smul]
2024-08-20 15:27:45 -04:00
rw [basis!_on_other hi hi2]
change S.val ((pairSwap (δ!₁ j) (δ!₂ j)).invFun i) =_
erw [pairSwap_inv_other (Ne.symm hi) (Ne.symm hi2)]
simp
2024-04-18 11:09:21 -04:00
/-- A point in the span of the first part of the basis as a charge. -/
def P (f : Fin n → ) : (PureU1 (2 * n + 1)).Charges := ∑ i, f i • basisAsCharges i
2024-04-18 11:09:21 -04:00
/-- A point in the span of the second part of the basis as a charge. -/
def P! (f : Fin n → ) : (PureU1 (2 * n + 1)).Charges := ∑ i, f i • basis!AsCharges i
2024-04-18 11:09:21 -04:00
/-- A point in the span of the basis as a charge. -/
def Pa (f : Fin n → ) (g : Fin n → ) : (PureU1 (2 * n + 1)).Charges := P f + P! g
2024-04-18 11:09:21 -04:00
lemma P_δ₁ (f : Fin n → ) (j : Fin n) : P f (δ₁ j) = f j := by
rw [P, sum_of_charges]
2024-09-04 09:17:37 -04:00
simp only [HSMul.hSMul, SMul.smul]
2024-04-18 11:09:21 -04:00
rw [Finset.sum_eq_single j]
2024-08-20 15:27:45 -04:00
· rw [basis_on_δ₁_self]
2024-08-30 10:43:29 -04:00
exact Rat.mul_one (f j)
2024-08-20 15:27:45 -04:00
· intro k _ hkj
rw [basis_on_δ₁_other hkj]
2024-08-30 10:43:29 -04:00
exact Rat.mul_zero (f k)
2024-08-20 15:27:45 -04:00
· simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff]
2024-04-18 11:09:21 -04:00
2024-07-12 11:23:02 -04:00
lemma P!_δ!₁ (f : Fin n → ) (j : Fin n) : P! f (δ!₁ j) = f j := by
2024-04-18 11:09:21 -04:00
rw [P!, sum_of_charges]
2024-09-04 09:17:37 -04:00
simp only [HSMul.hSMul, SMul.smul]
2024-04-18 11:09:21 -04:00
rw [Finset.sum_eq_single j]
2024-08-20 15:27:45 -04:00
· rw [basis!_on_δ!₁_self]
2024-08-30 10:43:29 -04:00
exact Rat.mul_one (f j)
2024-08-20 15:27:45 -04:00
· intro k _ hkj
rw [basis!_on_δ!₁_other hkj]
2024-08-30 10:43:29 -04:00
exact Rat.mul_zero (f k)
2024-08-20 15:27:45 -04:00
· simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff]
2024-04-18 11:09:21 -04:00
lemma P_δ₂ (f : Fin n → ) (j : Fin n) : P f (δ₂ j) = - f j := by
rw [P, sum_of_charges]
2024-09-04 09:17:37 -04:00
simp only [HSMul.hSMul, SMul.smul]
2024-04-18 11:09:21 -04:00
rw [Finset.sum_eq_single j]
2024-08-20 15:27:45 -04:00
· rw [basis_on_δ₂_self]
2024-08-30 10:43:29 -04:00
exact mul_neg_one (f j)
2024-08-20 15:27:45 -04:00
· intro k _ hkj
rw [basis_on_δ₂_other hkj]
2024-08-30 10:43:29 -04:00
exact Rat.mul_zero (f k)
2024-08-20 15:27:45 -04:00
· simp
2024-04-18 11:09:21 -04:00
lemma P!_δ!₂ (f : Fin n → ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
rw [P!, sum_of_charges]
2024-09-04 09:17:37 -04:00
simp only [HSMul.hSMul, SMul.smul]
2024-04-18 11:09:21 -04:00
rw [Finset.sum_eq_single j]
2024-08-20 15:27:45 -04:00
· rw [basis!_on_δ!₂_self]
2024-08-30 10:43:29 -04:00
exact mul_neg_one (f j)
2024-08-20 15:27:45 -04:00
· intro k _ hkj
rw [basis!_on_δ!₂_other hkj]
2024-08-30 10:43:29 -04:00
exact Rat.mul_zero (f k)
2024-08-20 15:27:45 -04:00
· simp
2024-04-18 11:09:21 -04:00
lemma P_δ₃ (f : Fin n → ) : P f (δ₃) = 0 := by
rw [P, sum_of_charges]
simp [HSMul.hSMul, SMul.smul, basis_on_δ₃]
lemma P!_δ!₃ (f : Fin n → ) : P! f (δ!₃) = 0 := by
rw [P!, sum_of_charges]
simp [HSMul.hSMul, SMul.smul, basis!_on_δ!₃]
lemma Pa_δa₁ (f g : Fin n.succ → ) : Pa f g δa₁ = f 0 := by
rw [Pa]
2024-04-18 11:20:15 -04:00
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
2024-04-18 11:09:21 -04:00
nth_rewrite 1 [δa₁_δ₁]
rw [δa₁_δ!₃]
rw [P_δ₁, P!_δ!₃]
2024-08-30 10:43:29 -04:00
exact Rat.add_zero (f 0)
2024-04-18 11:09:21 -04:00
2024-07-12 11:23:02 -04:00
lemma Pa_δa₂ (f g : Fin n.succ → ) (j : Fin n) : Pa f g (δa₂ j) = f j.succ + g j.castSucc := by
2024-04-18 11:09:21 -04:00
rw [Pa]
2024-04-18 11:20:15 -04:00
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
2024-04-18 11:09:21 -04:00
nth_rewrite 1 [δa₂_δ₁]
rw [δa₂_δ!₁]
rw [P_δ₁, P!_δ!₁]
2024-07-12 11:23:02 -04:00
lemma Pa_δa₃ (f g : Fin n.succ → ) : Pa f g (δa₃) = g (Fin.last n) := by
2024-04-18 11:09:21 -04:00
rw [Pa]
2024-04-18 11:20:15 -04:00
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
2024-04-18 11:09:21 -04:00
nth_rewrite 1 [δa₃_δ₃]
rw [δa₃_δ!₁]
rw [P_δ₃, P!_δ!₁]
2024-08-30 10:43:29 -04:00
exact Rat.zero_add (g (Fin.last n))
2024-04-18 11:09:21 -04:00
lemma Pa_δa₄ (f g : Fin n.succ → ) (j : Fin n.succ) : Pa f g (δa₄ j) = - f j - g j := by
rw [Pa]
2024-04-18 11:20:15 -04:00
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
2024-04-18 11:09:21 -04:00
nth_rewrite 1 [δa₄_δ₂]
rw [δa₄_δ!₂]
rw [P_δ₂, P!_δ!₂]
ring
lemma P_linearACC (f : Fin n → ) : (accGrav (2 * n + 1)) (P f) = 0 := by
rw [accGrav]
2024-04-18 11:20:15 -04:00
simp only [LinearMap.coe_mk, AddHom.coe_mk]
2024-04-18 11:09:21 -04:00
rw [sum_δ]
simp [P_δ₂, P_δ₁, P_δ₃]
lemma P!_linearACC (f : Fin n → ) : (accGrav (2 * n + 1)) (P! f) = 0 := by
rw [accGrav]
2024-04-18 11:20:15 -04:00
simp only [LinearMap.coe_mk, AddHom.coe_mk]
2024-04-18 11:09:21 -04:00
rw [sum_δ!]
simp [P!_δ!₂, P!_δ!₁, P!_δ!₃]
lemma P_accCube (f : Fin n → ) : accCube (2 * n +1) (P f) = 0 := by
rw [accCube_explicit, sum_δ, P_δ₃]
2024-04-18 11:20:15 -04:00
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add]
2024-04-18 11:09:21 -04:00
apply Finset.sum_eq_zero
intro i _
2024-10-12 08:16:24 +00:00
simp only [P_δ₁, P_δ₂]
2024-04-18 11:09:21 -04:00
ring
lemma P!_accCube (f : Fin n → ) : accCube (2 * n +1) (P! f) = 0 := by
rw [accCube_explicit, sum_δ!, P!_δ!₃]
2024-04-18 11:20:15 -04:00
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add]
2024-04-18 11:09:21 -04:00
apply Finset.sum_eq_zero
intro i _
2024-09-04 09:17:37 -04:00
simp only [P!_δ!₁, P!_δ!₂]
2024-04-18 11:09:21 -04:00
ring
lemma P_P_P!_accCube (g : Fin n → ) (j : Fin n) :
accCubeTriLinSymm (P g) (P g) (basis!AsCharges j)
2024-04-18 11:09:21 -04:00
= (P g (δ!₁ j))^2 - (g j)^2 := by
2024-09-04 09:17:37 -04:00
simp only [accCubeTriLinSymm, PureU1Charges_numberCharges, TriLinearSymm.mk₃_toFun_apply_apply]
2024-04-18 11:09:21 -04:00
rw [sum_δ!, basis!_on_δ!₃]
2024-04-18 11:20:15 -04:00
simp only [mul_zero, Function.comp_apply, zero_add]
2024-04-18 11:09:21 -04:00
rw [Finset.sum_eq_single j, basis!_on_δ!₁_self, basis!_on_δ!₂_self]
2024-08-20 15:27:45 -04:00
· rw [← δ₂_δ!₂, P_δ₂]
ring
· intro k _ hkj
erw [basis!_on_δ!₁_other hkj.symm, basis!_on_δ!₂_other hkj.symm]
simp only [mul_zero, add_zero]
· simp
2024-04-18 11:09:21 -04:00
lemma P_zero (f : Fin n → ) (h : P f = 0) : ∀ i, f i = 0 := by
intro i
erw [← P_δ₁ f]
rw [h]
rfl
lemma P!_zero (f : Fin n → ) (h : P! f = 0) : ∀ i, f i = 0 := by
intro i
rw [← P!_δ!₁ f]
rw [h]
rfl
2024-07-12 11:23:02 -04:00
lemma Pa_zero (f g : Fin n.succ → ) (h : Pa f g = 0) :
2024-04-18 11:09:21 -04:00
∀ i, f i = 0 := by
have h₃ := Pa_δa₁ f g
rw [h] at h₃
change 0 = _ at h₃
2024-09-04 09:17:37 -04:00
simp only at h₃
2024-04-18 11:09:21 -04:00
intro i
have hinduc (iv : ) (hiv : iv < n.succ) : f ⟨iv, hiv⟩ = 0 := by
induction iv
exact h₃.symm
rename_i iv hi
2024-08-30 11:52:27 -04:00
have hivi : iv < n.succ := lt_of_succ_lt hiv
2024-04-18 11:09:21 -04:00
have hi2 := hi hivi
have h1 := Pa_δa₄ f g ⟨iv, hivi⟩
rw [h, hi2] at h1
change 0 = _ at h1
2024-09-04 09:17:37 -04:00
simp only [neg_zero, succ_eq_add_one, zero_sub, zero_eq_neg] at h1
2024-08-30 11:52:27 -04:00
have h2 := Pa_δa₂ f g ⟨iv, succ_lt_succ_iff.mp hiv⟩
2024-10-12 08:16:24 +00:00
simp only [succ_eq_add_one, h, Fin.succ_mk, Fin.castSucc_mk, h1, add_zero] at h2
2024-04-18 11:09:21 -04:00
exact h2.symm
exact hinduc i.val i.prop
lemma Pa_zero! (f g : Fin n.succ → ) (h : Pa f g = 0) :
∀ i, g i = 0 := by
have hf := Pa_zero f g h
rw [Pa, P] at h
2024-09-04 09:17:37 -04:00
simp only [succ_eq_add_one, hf, zero_smul, sum_const_zero, zero_add] at h
2024-04-18 11:09:21 -04:00
exact P!_zero g h
/-- A point in the span of the first part of the basis. -/
def P' (f : Fin n → ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basis i
/-- A point in the span of the second part of the basis. -/
def P!' (f : Fin n → ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basis! i
/-- A point in the span of the whole basis. -/
def Pa' (f : (Fin n) ⊕ (Fin n) → ) : (PureU1 (2 * n + 1)).LinSols :=
∑ i, f i • basisa i
lemma Pa'_P'_P!' (f : (Fin n) ⊕ (Fin n) → ) :
2024-07-19 17:00:32 -04:00
Pa' f = P' (f ∘ Sum.inl) + P!' (f ∘ Sum.inr) := by
2024-04-18 11:09:21 -04:00
exact Fintype.sum_sum_type _
lemma P'_val (f : Fin n → ) : (P' f).val = P f := by
2024-09-04 09:17:37 -04:00
simp only [P', P]
2024-04-18 11:09:21 -04:00
funext i
rw [sum_of_anomaly_free_linear, sum_of_charges]
2024-08-30 10:43:29 -04:00
rfl
2024-04-18 11:09:21 -04:00
lemma P!'_val (f : Fin n → ) : (P!' f).val = P! f := by
2024-09-04 09:17:37 -04:00
simp only [P!', P!]
2024-04-18 11:09:21 -04:00
funext i
rw [sum_of_anomaly_free_linear, sum_of_charges]
2024-08-30 10:43:29 -04:00
rfl
2024-04-18 11:09:21 -04:00
theorem basis_linear_independent : LinearIndependent (@basis n) := by
apply Fintype.linearIndependent_iff.mpr
intro f h
change P' f = 0 at h
2024-08-30 10:43:29 -04:00
have h1 : (P' f).val = 0 :=
(AddSemiconjBy.eq_zero_iff (ACCSystemLinear.LinSols.val 0)
(congrFun (congrArg HAdd.hAdd (congrArg ACCSystemLinear.LinSols.val (id (Eq.symm h))))
(ACCSystemLinear.LinSols.val 0))).mp rfl
2024-04-18 11:09:21 -04:00
rw [P'_val] at h1
exact P_zero f h1
theorem basis!_linear_independent : LinearIndependent (@basis! n) := by
apply Fintype.linearIndependent_iff.mpr
intro f h
change P!' f = 0 at h
2024-08-30 10:43:29 -04:00
have h1 : (P!' f).val = 0 :=
(AddSemiconjBy.eq_zero_iff (ACCSystemLinear.LinSols.val 0)
(congrFun (congrArg HAdd.hAdd (congrArg ACCSystemLinear.LinSols.val (id (Eq.symm h))))
(ACCSystemLinear.LinSols.val 0))).mp rfl
2024-04-18 11:09:21 -04:00
rw [P!'_val] at h1
exact P!_zero f h1
theorem basisa_linear_independent : LinearIndependent (@basisa n.succ) := by
apply Fintype.linearIndependent_iff.mpr
intro f h
change Pa' f = 0 at h
2024-08-30 10:43:29 -04:00
have h1 : (Pa' f).val = 0 :=
(AddSemiconjBy.eq_zero_iff (ACCSystemLinear.LinSols.val 0)
(congrFun (congrArg HAdd.hAdd (congrArg ACCSystemLinear.LinSols.val (id (Eq.symm h))))
(ACCSystemLinear.LinSols.val 0))).mp rfl
2024-04-18 11:09:21 -04:00
rw [Pa'_P'_P!'] at h1
change (P' (f ∘ Sum.inl)).val + (P!' (f ∘ Sum.inr)).val = 0 at h1
rw [P!'_val, P'_val] at h1
change Pa (f ∘ Sum.inl) (f ∘ Sum.inr) = 0 at h1
have hf := Pa_zero (f ∘ Sum.inl) (f ∘ Sum.inr) h1
have hg := Pa_zero! (f ∘ Sum.inl) (f ∘ Sum.inr) h1
intro i
2024-08-20 15:27:45 -04:00
simp_all only [succ_eq_add_one, Function.comp_apply]
2024-04-18 11:09:21 -04:00
cases i
2024-08-20 15:27:45 -04:00
· simp_all
· simp_all
2024-04-18 11:09:21 -04:00
2024-07-12 11:23:02 -04:00
lemma Pa'_eq (f f' : (Fin n.succ) ⊕ (Fin n.succ) → ) : Pa' f = Pa' f' ↔ f = f' := by
2024-08-20 15:27:45 -04:00
refine Iff.intro (fun h => ?_) (fun h => ?_)
· funext i
rw [Pa', Pa'] at h
have h1 : ∑ i : Fin n.succ ⊕ Fin n.succ, (f i + (- f' i)) • basisa i = 0 := by
simp only [add_smul, neg_smul]
rw [Finset.sum_add_distrib]
rw [h]
rw [← Finset.sum_add_distrib]
simp
have h2 : ∀ i, (f i + (- f' i)) = 0 := by
exact Fintype.linearIndependent_iff.mp (@basisa_linear_independent n)
(fun i => f i + -f' i) h1
have h2i := h2 i
linarith
· rw [h]
2024-04-18 11:09:21 -04:00
2024-07-09 19:22:16 -04:00
/-! TODO: Replace the definition of `join` with a Mathlib definition, most likely `Sum.elim`. -/
/-- A helper function for what follows. -/
2024-07-12 11:23:02 -04:00
def join (g f : Fin n → ) : Fin n ⊕ Fin n → := fun i =>
2024-04-18 11:09:21 -04:00
match i with
| .inl i => g i
| .inr i => f i
lemma join_ext (g g' : Fin n → ) (f f' : Fin n → ) :
join g f = join g' f' ↔ g = g' ∧ f = f' := by
2024-08-20 15:27:45 -04:00
refine Iff.intro (fun h => ?_) (fun h => ?_)
· apply And.intro
· funext i
exact congr_fun h (Sum.inl i)
· funext i
exact congr_fun h (Sum.inr i)
· rw [h.left, h.right]
2024-04-18 11:09:21 -04:00
lemma join_Pa (g g' : Fin n.succ → ) (f f' : Fin n.succ → ) :
2024-04-18 11:20:15 -04:00
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
2024-08-20 15:27:45 -04:00
refine Iff.intro (fun h => ?_) (fun h => ?_)
· rw [Pa'_eq, join_ext] at h
rw [h.left, h.right]
· apply ACCSystemLinear.LinSols.ext
rw [Pa'_P'_P!', Pa'_P'_P!']
simp only [succ_eq_add_one, ACCSystemLinear.linSolsAddCommMonoid_add_val, P'_val, P!'_val]
exact h
2024-04-18 11:09:21 -04:00
lemma Pa_eq (g g' : Fin n.succ → ) (f f' : Fin n.succ → ) :
Pa g f = Pa g' f' ↔ g = g' ∧ f = f' := by
rw [← join_Pa]
rw [← join_ext]
exact Pa'_eq _ _
2024-07-12 11:23:02 -04:00
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) =
2024-11-02 08:50:17 +00:00
Module.finrank (PureU1 (2 * n.succ + 1)).LinSols := by
2024-04-18 11:09:21 -04:00
erw [BasisLinear.finrank_AnomalyFreeLinear]
2024-04-18 11:20:15 -04:00
simp only [Fintype.card_sum, Fintype.card_fin]
2024-08-30 11:52:27 -04:00
exact Eq.symm (Nat.two_mul n.succ)
2024-04-18 11:09:21 -04:00
/-- The basis formed out of our basisa vectors. -/
noncomputable def basisaAsBasis :
Basis (Fin n.succ ⊕ Fin n.succ) (PureU1 (2 * n.succ + 1)).LinSols :=
basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card
lemma span_basis (S : (PureU1 (2 * n.succ + 1)).LinSols) :
2024-07-18 16:46:29 -04:00
∃ (g f : Fin n.succ → ), S.val = P g + P! f := by
2024-04-18 11:09:21 -04:00
have h := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span basisaAsBasis S)
obtain ⟨f, hf⟩ := h
2024-09-04 09:17:37 -04:00
simp only [succ_eq_add_one, basisaAsBasis, coe_basisOfLinearIndependentOfCardEqFinrank,
Fintype.sum_sum_type] at hf
2024-04-18 11:09:21 -04:00
change P' _ + P!' _ = S at hf
use f ∘ Sum.inl
use f ∘ Sum.inr
rw [← hf]
2024-09-04 09:17:37 -04:00
simp only [succ_eq_add_one, ACCSystemLinear.linSolsAddCommMonoid_add_val, P'_val, P!'_val]
2024-04-18 11:09:21 -04:00
rfl
lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ)
(hS : ((FamilyPermutations (2 * n.succ + 1)).linSolRep
2024-07-19 17:00:32 -04:00
(pairSwap (δ!₁ j) (δ!₂ j))) S = S') (g f : Fin n.succ → ) (hS1 : S.val = P g + P! f) :
2024-04-18 11:09:21 -04:00
∃ (g' f' : Fin n.succ → ),
2024-07-19 17:00:32 -04:00
S'.val = P g' + P! f' ∧ P! f' = P! f +
2024-04-18 11:09:21 -04:00
(S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j ∧ g' = g := by
let X := P! f + (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j
have hf : P! f ∈ Submodule.span (Set.range basis!AsCharges) := by
2024-07-19 17:00:32 -04:00
rw [(mem_span_range_iff_exists_fun )]
use f
rfl
2024-04-18 11:09:21 -04:00
have hP : (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j ∈
Submodule.span (Set.range basis!AsCharges) := by
apply Submodule.smul_mem
apply SetLike.mem_of_subset
apply Submodule.subset_span
simp_all only [Set.mem_range, exists_apply_eq_apply]
2024-07-12 11:23:02 -04:00
have hX : X ∈ Submodule.span (Set.range (basis!AsCharges)) := by
2024-04-18 11:09:21 -04:00
apply Submodule.add_mem
exact hf
exact hP
have hXsum := (mem_span_range_iff_exists_fun ).mp hX
obtain ⟨f', hf'⟩ := hXsum
use g
use f'
change P! f' = _ at hf'
erw [hf']
2024-04-18 11:20:15 -04:00
simp only [and_self, and_true]
2024-04-18 11:09:21 -04:00
change S'.val = P g + (P! f + _)
rw [← add_assoc, ← hS1]
apply swap!_as_add at hS
exact hS
end VectorLikeOddPlane
end PureU1