PhysLean/HepLean/PerturbationTheory/WickContraction/ExtractEquiv.lean

111 lines
3.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Insert
/-!
# Equivalence extracting element from contraction
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open HepLean.Fin
lemma extractEquiv_equiv {c1 c2 : (c : WickContraction n) × Option c.uncontracted}
(h : c1.1 = c2.1) (ho : c1.2 = uncontractedCongr (by rw [h]) c2.2) : c1 = c2 := by
cases c1
cases c2
simp_all only [Sigma.mk.inj_iff]
simp only at h
subst h
simp only [uncontractedCongr, Equiv.optionCongr_apply, heq_eq_eq, true_and]
rename_i a
match a with
| none => simp
| some a =>
simp only [Option.map_some', Option.some.injEq]
ext
simp
/-- The equivalence between `WickContraction n.succ` and the sigma type
`(c : WickContraction n) × Option c.uncontracted` formed by inserting
and erasing elements from a contraction. -/
def extractEquiv (i : Fin n.succ) : WickContraction n.succ ≃
(c : WickContraction n) × Option c.uncontracted where
toFun := fun c => ⟨erase c i, getDualErase c i⟩
invFun := fun ⟨c, j⟩ => insert c i j
left_inv f := by
simp
right_inv f := by
refine extractEquiv_equiv ?_ ?_
simp only [insert_erase]
simp only [Nat.succ_eq_add_one]
have h1 := insert_getDualErase f.fst i f.snd
exact insert_getDualErase _ i _
lemma extractEquiv_symm_none_uncontracted (i : Fin n.succ) (c : WickContraction n) :
((extractEquiv i).symm ⟨c, none⟩).uncontracted =
(Insert.insert i (c.uncontracted.map i.succAboveEmb)) := by
exact insert_none_uncontracted c i
@[simp]
lemma extractEquiv_apply_congr_symm_apply {n m : } (k : )
(hnk : k < n.succ) (hkm : k < m.succ) (hnm : n = m) (c : WickContraction n)
(i : c.uncontracted) : congr (by rw [hnm]) ((extractEquiv ⟨k, hkm⟩
(congr (by rw [hnm]) ((extractEquiv ⟨k, hnk⟩).symm ⟨c, i⟩)))).1 = c := by
subst hnm
simp
/-- The fintype instance of `WickContraction 0` defined through its single
element `empty`. -/
instance fintype_zero : Fintype (WickContraction 0) where
elems := {empty}
complete := by
intro c
simp only [Finset.mem_singleton]
apply Subtype.eq
simp only [empty]
ext a
apply Iff.intro
· intro h
have hc := c.2.1 a h
rw [Finset.card_eq_two] at hc
obtain ⟨x, y, hxy, ha⟩ := hc
exact Fin.elim0 x
· simp
lemma sum_WickContraction_nil (f : WickContraction 0 → M) [AddCommMonoid M] :
∑ c, f c = f empty := by
rw [Finset.sum_eq_single_of_mem]
simp only [Finset.mem_univ]
intro b hb
fin_cases b
simp
/-- The fintype instance of `WickContraction n`, for `n.succ` this is defined
through the equivalence `extractEquiv`. -/
instance fintype_succ : (n : ) → Fintype (WickContraction n)
| 0 => fintype_zero
| Nat.succ n => by
letI := fintype_succ n
exact Fintype.ofEquiv _ (extractEquiv 0).symm
lemma sum_extractEquiv_congr [AddCommMonoid M] {n m : } (i : Fin n) (f : WickContraction n → M)
(h : n = m.succ) :
∑ c, f c = ∑ (c : WickContraction m), ∑ (k : Option c.uncontracted),
f (congr h.symm ((extractEquiv (finCongr h i)).symm ⟨c, k⟩)) := by
subst h
simp only [finCongr_refl, Equiv.refl_apply, congr_refl]
rw [← (extractEquiv i).symm.sum_comp]
rw [Finset.sum_sigma']
rfl
end WickContraction