PhysLean/HepLean/PerturbationTheory/WickContraction/UncontractedList.lean

521 lines
20 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.ExtractEquiv
/-!
# List of uncontracted elements of a Wick contraction
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open HepLean.Fin
/-!
## Some properties of lists of fin
-/
lemma fin_list_sorted_monotone_sorted {n m : } (l: List (Fin n)) (hl : l.Sorted (· ≤ ·))
(f : Fin n → Fin m) (hf : StrictMono f) : ((List.map f l)).Sorted (· ≤ ·) := by
induction l with
| nil => simp
| cons a l ih =>
simp only [List.map_cons, List.sorted_cons, List.mem_map, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂]
apply And.intro
· simp only [List.sorted_cons] at hl
intro b hb
have hl1 := hl.1 b hb
exact (StrictMono.le_iff_le hf).mpr hl1
· simp only [List.sorted_cons] at hl
exact ih hl.2
lemma fin_list_sorted_succAboveEmb_sorted (l: List (Fin n)) (hl : l.Sorted (· ≤ ·))
(i : Fin n.succ) : ((List.map i.succAboveEmb l)).Sorted (· ≤ ·) := by
apply fin_list_sorted_monotone_sorted
exact hl
simp only [Fin.coe_succAboveEmb]
exact Fin.strictMono_succAbove i
lemma fin_list_sorted_split :
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : ) →
l = l.filter (fun x => x.1 < i) ++ l.filter (fun x => i ≤ x.1)
| [], _, _ => by simp
| a :: l, hl, i => by
simp only [List.sorted_cons] at hl
by_cases ha : a < i
· conv_lhs => rw [fin_list_sorted_split l hl.2 i]
rw [← List.cons_append]
rw [List.filter_cons_of_pos, List.filter_cons_of_neg]
simp only [decide_eq_true_eq, not_le, ha]
simp [ha]
· have hx : List.filter (fun x => decide (x.1 < i)) (a :: l) = [] := by
simp only [ha, decide_false, Bool.false_eq_true, not_false_eq_true, List.filter_cons_of_neg,
List.filter_eq_nil_iff, decide_eq_true_eq, not_lt]
intro b hb
have hb' := hl.1 b hb
omega
simp only [hx, List.nil_append]
rw [List.filter_cons_of_pos]
simp only [List.cons.injEq, true_and]
have hl' := fin_list_sorted_split l hl.2 i
have hx : List.filter (fun x => decide (x.1 < i)) (l) = [] := by
simp only [List.filter_eq_nil_iff, decide_eq_true_eq, not_lt]
intro b hb
have hb' := hl.1 b hb
omega
simp only [hx, List.nil_append] at hl'
conv_lhs => rw [hl']
simp only [decide_eq_true_eq]
omega
lemma fin_list_sorted_indexOf_filter_le_mem :
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : Fin n) →
(hl : i ∈ l) →
List.indexOf i (List.filter (fun x => decide (↑i ≤ ↑x)) l) = 0
| [], _, _, _ => by simp
| a :: l, hl, i, hi => by
simp only [List.sorted_cons] at hl
by_cases ha : i ≤ a
· simp only [ha, decide_true, List.filter_cons_of_pos]
have ha : a = i := by
simp only [List.mem_cons] at hi
rcases hi with hi | hi
· subst hi
rfl
· have hl' := hl.1 i hi
exact Fin.le_antisymm hl' ha
subst ha
simp
· simp only [not_le] at ha
rw [List.filter_cons_of_neg (by simpa using ha)]
rw [fin_list_sorted_indexOf_filter_le_mem l hl.2]
simp only [List.mem_cons] at hi
rcases hi with hi | hi
· omega
· exact hi
lemma fin_list_sorted_indexOf_mem :
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : Fin n) →
(hi : i ∈ l) →
l.indexOf i = (l.filter (fun x => x.1 < i.1)).length := by
intro l hl i hi
conv_lhs => rw [fin_list_sorted_split l hl i]
rw [List.indexOf_append_of_not_mem]
erw [fin_list_sorted_indexOf_filter_le_mem l hl i hi]
· simp
· simp
lemma orderedInsert_of_fin_list_sorted :
(l : List (Fin n)) → (hl : l.Sorted (· ≤ ·)) → (i : Fin n) →
List.orderedInsert (· ≤ ·) i l = l.filter (fun x => x.1 < i.1) ++
i :: l.filter (fun x => i.1 ≤ x.1)
| [], _, _ => by simp
| a :: l, hl, i => by
simp only [List.sorted_cons] at hl
by_cases ha : i ≤ a
· simp only [List.orderedInsert, ha, ↓reduceIte, Fin.val_fin_lt, decide_eq_true_eq, not_lt,
List.filter_cons_of_neg, Fin.val_fin_le, decide_true, List.filter_cons_of_pos]
have h1 : List.filter (fun x => decide (↑x < ↑i)) l = [] := by
simp only [List.filter_eq_nil_iff, decide_eq_true_eq, not_lt]
intro a ha
have ha' := hl.1 a ha
omega
have hl : l = List.filter (fun x => decide (i ≤ x)) l := by
conv_lhs => rw [fin_list_sorted_split l hl.2 i]
simp [h1]
simp [← hl, h1]
· simp only [List.orderedInsert, ha, ↓reduceIte, Fin.val_fin_lt, Fin.val_fin_le, decide_false,
Bool.false_eq_true, not_false_eq_true, List.filter_cons_of_neg]
rw [List.filter_cons_of_pos]
rw [orderedInsert_of_fin_list_sorted l hl.2 i]
simp only [Fin.val_fin_lt, Fin.val_fin_le, List.cons_append]
simp only [decide_eq_true_eq]
omega
lemma orderedInsert_eq_insertIdx_of_fin_list_sorted (l : List (Fin n)) (hl : l.Sorted (· ≤ ·))
(i : Fin n) :
List.orderedInsert (· ≤ ·) i l = l.insertIdx (l.filter (fun x => x.1 < i.1)).length i := by
let n : Fin l.length.succ := ⟨(List.filter (fun x => decide (x < i)) l).length, by
have h1 := l.length_filter_le (fun x => x.1 < i.1)
simp only [Fin.val_fin_lt] at h1
omega⟩
simp only [Fin.val_fin_lt]
conv_rhs => rw [insertIdx_eq_take_drop _ _ n]
rw [orderedInsert_of_fin_list_sorted]
congr
· conv_rhs =>
rhs
rw [fin_list_sorted_split l hl i]
simp [n]
· conv_rhs =>
rhs
rw [fin_list_sorted_split l hl i]
simp [n]
exact hl
/-!
## Uncontracted List
-/
/-- Given a Wick contraction `c`, the ordered list of elements of `Fin n` which are not contracted,
i.e. do not appera anywhere in `c.1`. -/
def uncontractedList : List (Fin n) := List.filter (fun x => x ∈ c.uncontracted) (List.finRange n)
lemma uncontractedList_mem_iff (i : Fin n) :
i ∈ c.uncontractedList ↔ i ∈ c.uncontracted := by
simp [uncontractedList]
@[simp]
lemma nil_zero_uncontractedList : (empty (n := 0)).uncontractedList = [] := by
simp [empty, uncontractedList]
lemma congr_uncontractedList {n m : } (h : n = m) (c : WickContraction n) :
((congr h) c).uncontractedList = List.map (finCongr h) c.uncontractedList := by
subst h
simp [congr]
lemma uncontractedList_get_mem_uncontracted (i : Fin c.uncontractedList.length) :
c.uncontractedList.get i ∈ c.uncontracted := by
rw [← uncontractedList_mem_iff]
simp
lemma uncontractedList_sorted : List.Sorted (· ≤ ·) c.uncontractedList := by
rw [uncontractedList]
apply List.Sorted.filter
rw [← List.ofFn_id]
exact Monotone.ofFn_sorted fun ⦃a b⦄ a => a
lemma uncontractedList_nodup : c.uncontractedList.Nodup := by
rw [uncontractedList]
refine List.Nodup.filter (fun x => decide (x ∈ c.uncontracted)) ?_
exact List.nodup_finRange n
lemma uncontractedList_toFinset (c : WickContraction n) :
c.uncontractedList.toFinset = c.uncontracted := by
simp [uncontractedList]
lemma uncontractedList_eq_sort (c : WickContraction n) :
c.uncontractedList = c.uncontracted.sort (· ≤ ·) := by
symm
rw [← uncontractedList_toFinset]
refine (List.toFinset_sort (α := Fin n) (· ≤ ·) ?_).mpr ?_
· exact uncontractedList_nodup c
· exact uncontractedList_sorted c
lemma uncontractedList_length_eq_card (c : WickContraction n) :
c.uncontractedList.length = c.uncontracted.card := by
rw [uncontractedList_eq_sort]
exact Finset.length_sort fun x1 x2 => x1 ≤ x2
lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [DecidablePred p] :
(c.uncontractedList.filter p) = (c.uncontracted.filter p).sort (· ≤ ·) := by
have h1 : (c.uncontractedList.filter p).Sorted (· ≤ ·) := by
apply List.Sorted.filter
exact uncontractedList_sorted c
have h2 : (c.uncontractedList.filter p).Nodup := by
refine List.Nodup.filter _ ?_
exact uncontractedList_nodup c
have h3 : (c.uncontractedList.filter p).toFinset = (c.uncontracted.filter p) := by
ext a
simp only [List.toFinset_filter, decide_eq_true_eq, Finset.mem_filter, List.mem_toFinset,
and_congr_left_iff]
rw [uncontractedList_mem_iff]
simp
have hx := (List.toFinset_sort (· ≤ ·) h2).mpr h1
rw [← hx, h3]
/-!
## uncontractedIndexEquiv
-/
/-- The equivalence between the positions of `c.uncontractedList` i.e. elements of
`Fin (c.uncontractedList).length` and the finite set `c.uncontracted` considered as a finite type.
-/
def uncontractedIndexEquiv (c : WickContraction n) :
Fin (c.uncontractedList).length ≃ c.uncontracted where
toFun i := ⟨c.uncontractedList.get i, c.uncontractedList_get_mem_uncontracted i⟩
invFun i := ⟨List.indexOf i.1 c.uncontractedList,
List.indexOf_lt_length.mpr ((c.uncontractedList_mem_iff i.1).mpr i.2)⟩
left_inv i := by
ext
exact List.get_indexOf (uncontractedList_nodup c) _
right_inv i := by
ext
simp
@[simp]
lemma uncontractedList_getElem_uncontractedIndexEquiv_symm (k : c.uncontracted) :
c.uncontractedList[(c.uncontractedIndexEquiv.symm k).val] = k := by
simp [uncontractedIndexEquiv]
lemma uncontractedIndexEquiv_symm_eq_filter_length (k : c.uncontracted) :
(c.uncontractedIndexEquiv.symm k).val =
(List.filter (fun i => i < k.val) c.uncontractedList).length := by
simp only [uncontractedIndexEquiv, List.get_eq_getElem, Equiv.coe_fn_symm_mk]
rw [fin_list_sorted_indexOf_mem]
· simp
· exact uncontractedList_sorted c
· rw [uncontractedList_mem_iff]
exact k.2
lemma take_uncontractedIndexEquiv_symm (k : c.uncontracted) :
c.uncontractedList.take (c.uncontractedIndexEquiv.symm k).val =
c.uncontractedList.filter (fun i => i < k.val) := by
have hl := fin_list_sorted_split c.uncontractedList (uncontractedList_sorted c) k.val
conv_lhs =>
rhs
rw [hl]
rw [uncontractedIndexEquiv_symm_eq_filter_length]
simp
/-!
## Uncontracted List get
-/
def uncontractedListGet {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
List 𝓕.States := φsΛ.uncontractedList.map φs.get
scoped[WickContraction] notation "[" φsΛ "]ᵘᶜ" => uncontractedListGet φsΛ
/-!
## uncontractedStatesEquiv
-/
/-- The equivalence between the type `Option c.uncontracted` for `WickContraction φs.length` and
`Option (Fin (c.uncontractedList.map φs.get).length)`, that is optional positions of
`c.uncontractedList.map φs.get` induced by `uncontractedIndexEquiv`. -/
def uncontractedStatesEquiv (φs : List 𝓕.States) (φsΛ : WickContraction φs.length) :
Option φsΛ.uncontracted ≃ Option (Fin [φsΛ]ᵘᶜ.length) :=
Equiv.optionCongr (φsΛ.uncontractedIndexEquiv.symm.trans
(finCongr (by simp [uncontractedListGet])))
@[simp]
lemma uncontractedStatesEquiv_none (φs : List 𝓕.States) (φsΛ : WickContraction φs.length) :
(uncontractedStatesEquiv φs φsΛ).toFun none = none := by
simp [uncontractedStatesEquiv]
lemma uncontractedStatesEquiv_list_sum [AddCommMonoid α] (φs : List 𝓕.States)
(φsΛ : WickContraction φs.length) (f : Option (Fin [φsΛ]ᵘᶜ.length) → α) :
∑ (i : Option (Fin [φsΛ]ᵘᶜ.length)), f i =
∑ (i : Option φsΛ.uncontracted), f (φsΛ.uncontractedStatesEquiv φs i) := by
rw [(φsΛ.uncontractedStatesEquiv φs).sum_comp]
/-!
## Uncontracted List for extractEquiv symm none
-/
lemma uncontractedList_succAboveEmb_sorted (c : WickContraction n) (i : Fin n.succ) :
((List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
apply fin_list_sorted_succAboveEmb_sorted
exact uncontractedList_sorted c
lemma uncontractedList_succAboveEmb_nodup (c : WickContraction n) (i : Fin n.succ) :
((List.map i.succAboveEmb c.uncontractedList)).Nodup := by
refine List.Nodup.map ?_ ?_
· exact Function.Embedding.injective i.succAboveEmb
· exact uncontractedList_nodup c
lemma uncontractedList_succAbove_orderedInsert_nodup (c : WickContraction n) (i : Fin n.succ) :
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Nodup := by
have h1 : (List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Perm
(i :: List.map i.succAboveEmb c.uncontractedList) := by
exact List.perm_orderedInsert (fun x1 x2 => x1 ≤ x2) i _
apply List.Perm.nodup h1.symm
simp only [Nat.succ_eq_add_one, List.nodup_cons, List.mem_map, not_exists,
not_and]
apply And.intro
· intro x _
exact Fin.succAbove_ne i x
· exact uncontractedList_succAboveEmb_nodup c i
lemma uncontractedList_succAbove_orderedInsert_sorted (c : WickContraction n) (i : Fin n.succ) :
(List.orderedInsert (· ≤ ·) i
(List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
refine List.Sorted.orderedInsert i (List.map (⇑i.succAboveEmb) c.uncontractedList) ?_
exact uncontractedList_succAboveEmb_sorted c i
lemma uncontractedList_succAbove_orderedInsert_toFinset (c : WickContraction n) (i : Fin n.succ) :
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).toFinset =
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)) := by
ext a
simp only [Nat.succ_eq_add_one, Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_orderedInsert,
List.mem_map, Finset.mem_insert, Finset.mem_map, Fin.succAboveEmb_apply]
rw [← uncontractedList_toFinset]
simp
lemma uncontractedList_succAbove_orderedInsert_eq_sort (c : WickContraction n) (i : Fin n.succ) :
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)) =
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)).sort (· ≤ ·) := by
rw [← uncontractedList_succAbove_orderedInsert_toFinset]
symm
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
· exact uncontractedList_succAbove_orderedInsert_nodup c i
· exact uncontractedList_succAbove_orderedInsert_sorted c i
lemma uncontractedList_extractEquiv_symm_none (c : WickContraction n) (i : Fin n.succ) :
((extractEquiv i).symm ⟨c, none⟩).uncontractedList =
List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList) := by
rw [uncontractedList_eq_sort, extractEquiv_symm_none_uncontracted]
rw [uncontractedList_succAbove_orderedInsert_eq_sort]
/-!
## Uncontracted List for extractEquiv symm some
-/
lemma uncontractedList_succAboveEmb_eraseIdx_toFinset (c : WickContraction n) (i : Fin n.succ)
(k : ) (hk : k < c.uncontractedList.length) :
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).toFinset =
(c.uncontracted.map i.succAboveEmb).erase (i.succAboveEmb c.uncontractedList[k]) := by
ext a
simp only [Fin.coe_succAboveEmb, List.mem_toFinset, Fin.succAboveEmb_apply, Finset.mem_erase,
ne_eq, Finset.mem_map]
rw [mem_eraseIdx_nodup _ _ _ (by simpa using hk)]
simp_all only [List.mem_map, List.getElem_map, ne_eq]
apply Iff.intro
· intro a_1
simp_all only [not_false_eq_true, true_and]
obtain ⟨left, right⟩ := a_1
obtain ⟨w, h⟩ := left
obtain ⟨left, right_1⟩ := h
subst right_1
use w
simp_all [uncontractedList]
· intro a_1
simp_all only [not_false_eq_true, and_true]
obtain ⟨left, right⟩ := a_1
obtain ⟨w, h⟩ := right
obtain ⟨left_1, right⟩ := h
subst right
use w
simp_all [uncontractedList]
exact uncontractedList_succAboveEmb_nodup c i
lemma uncontractedList_succAboveEmb_eraseIdx_sorted (c : WickContraction n) (i : Fin n.succ)
(k: ) : ((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Sorted (· ≤ ·) := by
apply HepLean.List.eraseIdx_sorted
exact uncontractedList_succAboveEmb_sorted c i
lemma uncontractedList_succAboveEmb_eraseIdx_nodup (c : WickContraction n) (i : Fin n.succ) (k: ) :
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Nodup := by
refine List.Nodup.eraseIdx k ?_
exact uncontractedList_succAboveEmb_nodup c i
lemma uncontractedList_succAboveEmb_eraseIdx_eq_sort (c : WickContraction n) (i : Fin n.succ)
(k : ) (hk : k < c.uncontractedList.length) :
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k) =
((c.uncontracted.map i.succAboveEmb).erase
(i.succAboveEmb c.uncontractedList[k])).sort (· ≤ ·) := by
rw [← uncontractedList_succAboveEmb_eraseIdx_toFinset]
symm
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
· exact uncontractedList_succAboveEmb_eraseIdx_nodup c i k
· exact uncontractedList_succAboveEmb_eraseIdx_sorted c i k
lemma uncontractedList_extractEquiv_symm_some (c : WickContraction n) (i : Fin n.succ)
(k : c.uncontracted) : ((extractEquiv i).symm ⟨c, some k⟩).uncontractedList =
((c.uncontractedList).map i.succAboveEmb).eraseIdx (c.uncontractedIndexEquiv.symm k) := by
rw [uncontractedList_eq_sort]
rw [uncontractedList_succAboveEmb_eraseIdx_eq_sort]
swap
simp only [Fin.is_lt]
congr
simp only [Nat.succ_eq_add_one, extractEquiv, Equiv.coe_fn_symm_mk,
uncontractedList_getElem_uncontractedIndexEquiv_symm, Fin.succAboveEmb_apply]
rw [insert_some_uncontracted]
ext a
simp
lemma uncontractedList_succAboveEmb_toFinset (c : WickContraction n) (i : Fin n.succ) :
(List.map i.succAboveEmb c.uncontractedList).toFinset =
(Finset.map i.succAboveEmb c.uncontracted) := by
ext a
simp only [Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_map, Finset.mem_map,
Fin.succAboveEmb_apply]
rw [← c.uncontractedList_toFinset]
simp
/-!
## uncontractedListOrderPos
-/
/-- Given a Wick contraction `c : WickContraction n` and a `Fin n.succ`, the number of elements
of `c.uncontractedList` which are less then `i`.
Suppose we want to insert into `c` at position `i`, then this is the position we would
need to insert into `c.uncontractedList`. -/
def uncontractedListOrderPos (c : WickContraction n) (i : Fin n.succ) : :=
(List.filter (fun x => x.1 < i.1) c.uncontractedList).length
@[simp]
lemma uncontractedListOrderPos_lt_length_add_one (c : WickContraction n) (i : Fin n.succ) :
c.uncontractedListOrderPos i < c.uncontractedList.length + 1 := by
simp only [uncontractedListOrderPos, Nat.succ_eq_add_one]
have h1 := c.uncontractedList.length_filter_le (fun x => x.1 < i.1)
omega
lemma take_uncontractedListOrderPos_eq_filter (c : WickContraction n) (i : Fin n.succ) :
(c.uncontractedList.take (c.uncontractedListOrderPos i)) =
c.uncontractedList.filter (fun x => x.1 < i.1) := by
nth_rewrite 1 [fin_list_sorted_split c.uncontractedList _ i]
simp only [uncontractedListOrderPos, Nat.succ_eq_add_one, List.take_left']
exact uncontractedList_sorted c
lemma take_uncontractedListOrderPos_eq_filter_sort (c : WickContraction n) (i : Fin n.succ) :
(c.uncontractedList.take (c.uncontractedListOrderPos i)) =
(c.uncontracted.filter (fun x => x.1 < i.1)).sort (· ≤ ·) := by
rw [take_uncontractedListOrderPos_eq_filter]
have h1 : (c.uncontractedList.filter (fun x => x.1 < i.1)).Sorted (· ≤ ·) := by
apply List.Sorted.filter
exact uncontractedList_sorted c
have h2 : (c.uncontractedList.filter (fun x => x.1 < i.1)).Nodup := by
refine List.Nodup.filter _ ?_
exact uncontractedList_nodup c
have h3 : (c.uncontractedList.filter (fun x => x.1 < i.1)).toFinset =
(c.uncontracted.filter (fun x => x.1 < i.1)) := by
rw [uncontractedList_eq_sort]
simp
rw [← h3]
exact ((List.toFinset_sort (α := Fin n) (· ≤ ·) h2).mpr h1).symm
lemma orderedInsert_succAboveEmb_uncontractedList_eq_insertIdx (c : WickContraction n)
(i : Fin n.succ) :
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)) =
(List.map i.succAboveEmb c.uncontractedList).insertIdx (uncontractedListOrderPos c i) i := by
rw [orderedInsert_eq_insertIdx_of_fin_list_sorted]
2025-01-22 08:53:08 +00:00
· congr 1
simp only [Nat.succ_eq_add_one, Fin.val_fin_lt, Fin.coe_succAboveEmb, uncontractedListOrderPos]
rw [List.filter_map]
simp only [List.length_map]
congr
funext x
simp only [Function.comp_apply, Fin.succAbove, decide_eq_decide]
split
· simp only [Fin.lt_def, Fin.coe_castSucc]
· rename_i h
simp_all only [Fin.lt_def, Fin.coe_castSucc, not_lt, Fin.val_succ]
omega
· exact uncontractedList_succAboveEmb_sorted c i
end WickContraction