PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/Indices/IndexString.lean

276 lines
9.7 KiB
Text
Raw Normal View History

2024-08-02 16:46:20 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.TensorIndex
2024-08-02 16:46:20 -04:00
/-!
# Strings of indices
A string of indices e.g. `ᵘ¹²ᵤ₄₃` is the structure we usually see
following a tensor symbol in index notation.
This file defines such an index string, and from it constructs a list of indices.
-/
open Lean
open String
namespace IndexNotation
variable (X : Type) [IndexNotation X] [Fintype X] [DecidableEq X]
/-!
## Lists of characters forming a string of indices.
-/
/-- A lemma used to show terminiation of recursive definitions which follow.
It says that the length of `List.dropWhile _ l.tail` is less then the length of
`l` when `l` is non-empty. -/
lemma dropWhile_isIndexSpecifier_length_lt (l : List Char) (hl : l ≠ []) :
(List.dropWhile (fun c => !isNotationChar X c) l.tail).length < l.length := by
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
simp only [gt_iff_lt]
have h2 : lt ++ ld = l.tail := by
exact List.takeWhile_append_dropWhile _ _
have h3 := congrArg List.length h2
rw [List.length_append] at h3
have h4 : l.length ≠ 0 := by
simp_all only [ne_eq, Bool.not_eq_true, Bool.decide_eq_false, List.takeWhile_append_dropWhile,
List.length_tail, List.length_eq_zero, not_false_eq_true]
have h5 : l.tail.length < l.length := by
rw [List.length_tail]
omega
have h6 : ld.length < l.length := by
omega
simpa [ld] using h6
/-- The proposition for a list of characters to be an index string. -/
def listCharIndexString (l : List Char) : Prop :=
if h : l = [] then True
else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
if ¬ listCharIndexTail sfst lt then False
else listCharIndexString ld
termination_by l.length
decreasing_by
simpa [ld, InvImage] using dropWhile_isIndexSpecifier_length_lt X l h
/-- A bool version of `listCharIndexString` for computation. -/
def listCharIndexStringBool (l : List Char) : Bool :=
if h : l = [] then true
else
let sfst := l.head h
if ¬ isNotationChar X sfst then false
else
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
if ¬ listCharIndexTail sfst lt then false
else listCharIndexStringBool ld
termination_by l.length
decreasing_by
simpa [ld, InvImage] using dropWhile_isIndexSpecifier_length_lt X l h
lemma listCharIndexString_iff (l : List Char) : listCharIndexString X l
↔ (if h : l = [] then True else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
if ¬ listCharIndexTail sfst lt then False
else listCharIndexString X ld) := by
rw [listCharIndexString]
lemma listCharIndexString_iff_bool (l : List Char) :
listCharIndexString X l ↔ listCharIndexStringBool X l = true := by
rw [listCharIndexString, listCharIndexStringBool]
by_cases h : l = []
simp [h]
simp [h]
intro _ _
exact listCharIndexString_iff_bool _
termination_by l.length
decreasing_by
simpa [InvImage] using dropWhile_isIndexSpecifier_length_lt X l h
instance : Decidable (listCharIndexString X l) :=
@decidable_of_decidable_of_iff _ _
((listCharIndexStringBool X l).decEq true)
(listCharIndexString_iff_bool X l).symm
/-!
## Returning the chars of first index from chars of string of indices.
In particular from a list of characters which form an index string,
to a list of characters which forms an index.
-/
/-- If a list of characters corresponds to an index string, then its head is an
index specifier. -/
lemma listCharIndexString_head_isIndexSpecifier (l : List Char) (h : listCharIndexString X l)
(hl : l ≠ []) : isNotationChar X (l.head hl) := by
by_contra
rw [listCharIndexString] at h
simp_all only [↓reduceDIte, Bool.false_eq_true, not_false_eq_true, ↓reduceIte]
/-- The tail of the first index in a list of characters corresponds to an index string
(junk on other lists). -/
def listCharIndexStringHeadIndexTail (l : List Char) : List Char :=
l.tail.takeWhile (fun c => ¬ isNotationChar X c)
/-- The tail of the first index in a list of characters corresponds to an index string
is the tail of a list of characters corresponding to an index specified by the head. -/
lemma listCharIndexStringHeadIndexTail_listCharIndexTail (l : List Char)
(h : listCharIndexString X l) (hl : l ≠ []) :
listCharIndexTail (l.head hl) (listCharIndexStringHeadIndexTail X l) := by
by_contra
have h1 := listCharIndexString_head_isIndexSpecifier X l h hl
rw [listCharIndexString] at h
simp_all only [not_true_eq_false, Bool.not_eq_true, Bool.decide_eq_false, ite_not, if_false_right,
ite_false, dite_false]
obtain ⟨left, _⟩ := h
rename_i x _
simp [listCharIndexStringHeadIndexTail] at x
simp_all only [Bool.false_eq_true]
/-- The first list of characters which form a index, from a list of characters
which form a string of indices. -/
def listCharIndexStringHeadIndex (l : List Char) : List Char :=
if h : l = [] then []
else l.head h :: listCharIndexStringHeadIndexTail X l
lemma listCharIndexStringHeadIndex_listCharIndex (l : List Char) (h : listCharIndexString X l) :
listCharIndex X (listCharIndexStringHeadIndex X l) := by
by_cases h1 : l = []
· subst h1
simp [listCharIndex, listCharIndexStringHeadIndex]
· simp [listCharIndexStringHeadIndex, listCharIndex, h1]
apply And.intro
exact listCharIndexString_head_isIndexSpecifier X l h h1
exact listCharIndexStringHeadIndexTail_listCharIndexTail X l h h1
/-!
## Dropping chars of first index from chars of string of indices.
-/
/-- The list of characters obtained by dropping the first block which
corresponds to an index. -/
def listCharIndexStringDropHeadIndex (l : List Char) : List Char :=
l.tail.dropWhile (fun c => ¬ isNotationChar X c)
lemma listCharIndexStringDropHeadIndex_listCharIndexString (l : List Char)
(h : listCharIndexString X l) :
listCharIndexString X (listCharIndexStringDropHeadIndex X l) := by
by_cases h1 : l = []
· subst h1
simp [listCharIndexStringDropHeadIndex, listCharIndexString]
· simp [listCharIndexStringDropHeadIndex, h1]
rw [listCharIndexString] at h
simp_all only [↓reduceDIte, Bool.not_eq_true, Bool.decide_eq_false, ite_not, if_false_right,
if_false_left, Bool.not_eq_false]
/-!
## Chars of all indices from char of string of indices
-/
/-- Given a list list of characters corresponding to an index string, the list
of lists of characters which correspond to an index and are non-zero corresponding
to that index string. -/
def listCharIndexStringTolistCharIndex (l : List Char) (h : listCharIndexString X l) :
List ({lI : List Char // listCharIndex X lI ∧ lI ≠ []}) :=
if hl : l = [] then [] else
⟨listCharIndexStringHeadIndex X l, by
apply And.intro (listCharIndexStringHeadIndex_listCharIndex X l h)
simp [listCharIndexStringHeadIndex]
exact hl⟩ ::
(listCharIndexStringTolistCharIndex (listCharIndexStringDropHeadIndex X l)
(listCharIndexStringDropHeadIndex_listCharIndexString X l h))
termination_by l.length
decreasing_by
rename_i h1
simpa [InvImage, listCharIndexStringDropHeadIndex] using
dropWhile_isIndexSpecifier_length_lt X l hl
/-!
## The definition of an index string
-/
/-- A string of indices to be associated with a tensor. For example, `ᵘ⁰ᵤ₂₆₀ᵘ³`. -/
def IndexString : Type := {s : String // listCharIndexStringBool X s.toList = true}
namespace IndexString
/-!
## Constructing a list of indices from an index string
-/
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
/-- The character list associated with a index string. -/
def toCharList (s : IndexString X) : List Char := s.val.toList
/-- The char list of an index string satisfies `listCharIndexString`. -/
lemma listCharIndexString (s : IndexString X) : listCharIndexString X s.toCharList := by
rw [listCharIndexString_iff_bool]
exact s.prop
/-- The indices associated to an index string. -/
def toIndexList (s : IndexString X) : IndexList X :=
(listCharIndexStringTolistCharIndex X s.toCharList (listCharIndexString s)).map
fun x => Index.ofCharList x.1 x.2
end IndexString
end IndexNotation
namespace TensorStructure
/-!
## Making a tensor index from an index string
-/
namespace TensorIndex
variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R)
variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
variable {n m : } {cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color}
open IndexNotation IndexListColor
/-- The construction of a tensor index from a tensor and a string satisfing conditions which are
easy to check automatically. -/
noncomputable def fromIndexString (T : 𝓣.Tensor cn) (s : String)
(hs : listCharIndexStringBool 𝓣.toTensorColor.Color s.toList = true)
(hn : n = (IndexString.toIndexList (⟨s, hs⟩ : IndexString 𝓣.Color)).length)
(hc : IndexListColorProp 𝓣.toTensorColor (
IndexString.toIndexList (⟨s, hs⟩ : IndexString 𝓣.Color)))
(hd : TensorColor.ColorMap.DualMap
(IndexString.toIndexList (⟨s, hs⟩ : IndexString 𝓣.Color)).colorMap
(cn ∘ Fin.cast hn.symm)) : 𝓣.TensorIndex :=
TensorStructure.TensorIndex.mkDualMap T
⟨(IndexString.toIndexList (⟨s, hs⟩ : IndexString 𝓣.Color)), hc⟩ hn hd
end TensorIndex
end TensorStructure