PhysLean/HepLean/Tensors/ComplexLorentz/Basic.lean

225 lines
8.9 KiB
Text
Raw Normal View History

2024-10-11 15:47:35 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Basic
2024-10-16 16:38:36 +00:00
import HepLean.Tensors.Tree.Dot
import HepLean.SpaceTime.WeylFermion.Contraction
import HepLean.SpaceTime.WeylFermion.Metric
import HepLean.SpaceTime.WeylFermion.Unit
import HepLean.SpaceTime.LorentzVector.Complex.Contraction
import HepLean.SpaceTime.LorentzVector.Complex.Metric
import HepLean.SpaceTime.LorentzVector.Complex.Unit
2024-10-11 15:47:35 +00:00
import HepLean.Mathematics.PiTensorProduct
2024-10-16 16:38:36 +00:00
import HepLean.SpaceTime.PauliMatrices.AsTensor
2024-10-11 15:47:35 +00:00
/-!
## Complex Lorentz tensors
-/
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open MonoidalCategory
namespace complexLorentzTensor
2024-10-11 15:47:35 +00:00
/-- The colors associated with complex representations of SL(2, ) of intrest to physics. -/
inductive Color
| upL : Color
| downL : Color
| upR : Color
| downR : Color
| up : Color
| down : Color
instance : DecidableEq Color := fun x y =>
match x, y with
| Color.upL, Color.upL => isTrue rfl
| Color.downL, Color.downL => isTrue rfl
| Color.upR, Color.upR => isTrue rfl
| Color.downR, Color.downR => isTrue rfl
| Color.up, Color.up => isTrue rfl
| Color.down, Color.down => isTrue rfl
/- The false -/
| Color.upL, Color.downL => isFalse fun h => Color.noConfusion h
| Color.upL, Color.upR => isFalse fun h => Color.noConfusion h
| Color.upL, Color.downR => isFalse fun h => Color.noConfusion h
| Color.upL, Color.up => isFalse fun h => Color.noConfusion h
| Color.upL, Color.down => isFalse fun h => Color.noConfusion h
| Color.downL, Color.upL => isFalse fun h => Color.noConfusion h
| Color.downL, Color.upR => isFalse fun h => Color.noConfusion h
| Color.downL, Color.downR => isFalse fun h => Color.noConfusion h
| Color.downL, Color.up => isFalse fun h => Color.noConfusion h
| Color.downL, Color.down => isFalse fun h => Color.noConfusion h
| Color.upR, Color.upL => isFalse fun h => Color.noConfusion h
| Color.upR, Color.downL => isFalse fun h => Color.noConfusion h
| Color.upR, Color.downR => isFalse fun h => Color.noConfusion h
| Color.upR, Color.up => isFalse fun h => Color.noConfusion h
| Color.upR, Color.down => isFalse fun h => Color.noConfusion h
| Color.downR, Color.upL => isFalse fun h => Color.noConfusion h
| Color.downR, Color.downL => isFalse fun h => Color.noConfusion h
| Color.downR, Color.upR => isFalse fun h => Color.noConfusion h
| Color.downR, Color.up => isFalse fun h => Color.noConfusion h
| Color.downR, Color.down => isFalse fun h => Color.noConfusion h
| Color.up, Color.upL => isFalse fun h => Color.noConfusion h
| Color.up, Color.downL => isFalse fun h => Color.noConfusion h
| Color.up, Color.upR => isFalse fun h => Color.noConfusion h
| Color.up, Color.downR => isFalse fun h => Color.noConfusion h
| Color.up, Color.down => isFalse fun h => Color.noConfusion h
| Color.down, Color.upL => isFalse fun h => Color.noConfusion h
| Color.down, Color.downL => isFalse fun h => Color.noConfusion h
| Color.down, Color.upR => isFalse fun h => Color.noConfusion h
| Color.down, Color.downR => isFalse fun h => Color.noConfusion h
| Color.down, Color.up => isFalse fun h => Color.noConfusion h
end complexLorentzTensor
2024-10-16 16:38:36 +00:00
noncomputable section
open complexLorentzTensor in
2024-10-16 16:38:36 +00:00
/-- The tensor structure for complex Lorentz tensors. -/
def complexLorentzTensor : TensorSpecies where
C := complexLorentzTensor.Color
2024-10-16 16:38:36 +00:00
G := SL(2, )
G_group := inferInstance
k :=
k_commRing := inferInstance
FDiscrete := Discrete.functor fun c =>
match c with
| Color.upL => Fermion.leftHanded
| Color.downL => Fermion.altLeftHanded
| Color.upR => Fermion.rightHanded
| Color.downR => Fermion.altRightHanded
| Color.up => Lorentz.complexContr
| Color.down => Lorentz.complexCo
τ := fun c =>
match c with
| Color.upL => Color.downL
| Color.downL => Color.upL
| Color.upR => Color.downR
| Color.downR => Color.upR
| Color.up => Color.down
| Color.down => Color.up
τ_involution c := by
match c with
| Color.upL => rfl
| Color.downL => rfl
| Color.upR => rfl
| Color.downR => rfl
| Color.up => rfl
| Color.down => rfl
contr := Discrete.natTrans fun c =>
match c with
| Discrete.mk Color.upL => Fermion.leftAltContraction
| Discrete.mk Color.downL => Fermion.altLeftContraction
| Discrete.mk Color.upR => Fermion.rightAltContraction
| Discrete.mk Color.downR => Fermion.altRightContraction
| Discrete.mk Color.up => Lorentz.contrCoContraction
| Discrete.mk Color.down => Lorentz.coContrContraction
metric := Discrete.natTrans fun c =>
match c with
| Discrete.mk Color.upL => Fermion.leftMetric
| Discrete.mk Color.downL => Fermion.altLeftMetric
| Discrete.mk Color.upR => Fermion.rightMetric
| Discrete.mk Color.downR => Fermion.altRightMetric
| Discrete.mk Color.up => Lorentz.contrMetric
| Discrete.mk Color.down => Lorentz.coMetric
unit := Discrete.natTrans fun c =>
match c with
| Discrete.mk Color.upL => Fermion.altLeftLeftUnit
| Discrete.mk Color.downL => Fermion.leftAltLeftUnit
| Discrete.mk Color.upR => Fermion.altRightRightUnit
| Discrete.mk Color.downR => Fermion.rightAltRightUnit
| Discrete.mk Color.up => Lorentz.coContrUnit
| Discrete.mk Color.down => Lorentz.contrCoUnit
repDim := fun c =>
2024-10-16 16:38:36 +00:00
match c with
| Color.upL => 2
| Color.downL => 2
| Color.upR => 2
| Color.downR => 2
| Color.up => 4
| Color.down => 4
2024-10-22 06:42:06 +00:00
repDim_neZero := fun c =>
match c with
| Color.upL => inferInstance
| Color.downL => inferInstance
| Color.upR => inferInstance
| Color.downR => inferInstance
| Color.up => inferInstance
| Color.down => inferInstance
basis := fun c =>
match c with
| Color.upL => Fermion.leftBasis
| Color.downL => Fermion.altLeftBasis
| Color.upR => Fermion.rightBasis
| Color.downR => Fermion.altRightBasis
| Color.up => Lorentz.complexContrBasisFin4
| Color.down => Lorentz.complexCoBasisFin4
2024-10-21 12:20:43 +00:00
contr_tmul_symm := fun c =>
match c with
| Color.upL => Fermion.leftAltContraction_tmul_symm
| Color.downL => Fermion.altLeftContraction_tmul_symm
| Color.upR => Fermion.rightAltContraction_tmul_symm
| Color.downR => Fermion.altRightContraction_tmul_symm
| Color.up => Lorentz.contrCoContraction_tmul_symm
| Color.down => Lorentz.coContrContraction_tmul_symm
contr_unit := fun c =>
match c with
| Color.upL => Fermion.contr_altLeftLeftUnit
| Color.downL => Fermion.contr_leftAltLeftUnit
| Color.upR => Fermion.contr_altRightRightUnit
| Color.downR => Fermion.contr_rightAltRightUnit
| Color.up => Lorentz.contr_coContrUnit
| Color.down => Lorentz.contr_contrCoUnit
unit_symm := fun c =>
match c with
| Color.upL => Fermion.altLeftLeftUnit_symm
| Color.downL => Fermion.leftAltLeftUnit_symm
| Color.upR => Fermion.altRightRightUnit_symm
| Color.downR => Fermion.rightAltRightUnit_symm
| Color.up => Lorentz.coContrUnit_symm
| Color.down => Lorentz.contrCoUnit_symm
2024-10-24 16:42:25 +00:00
contr_metric := fun c =>
match c with
| Color.upL => by simpa using Fermion.leftAltContraction_apply_metric
| Color.downL => by simpa using Fermion.altLeftContraction_apply_metric
| Color.upR => by simpa using Fermion.rightAltContraction_apply_metric
| Color.downR => by simpa using Fermion.altRightContraction_apply_metric
| Color.up => by simpa using Lorentz.contrCoContraction_apply_metric
| Color.down => by simpa using Lorentz.coContrContraction_apply_metric
namespace complexLorentzTensor
instance : DecidableEq complexLorentzTensor.C := complexLorentzTensor.instDecidableEqColor
2024-10-23 08:01:23 +00:00
lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.repDim c))
(j : Fin (complexLorentzTensor.repDim (complexLorentzTensor.τ c))) :
complexLorentzTensor.castToField
((complexLorentzTensor.contr.app {as := c}).hom
(complexLorentzTensor.basis c i ⊗ₜ complexLorentzTensor.basis (complexLorentzTensor.τ c) j)) =
if i.val = j.val then 1 else 0 :=
match c with
| Color.upL => Fermion.leftAltContraction_basis _ _
| Color.downL => Fermion.altLeftContraction_basis _ _
| Color.upR => Fermion.rightAltContraction_basis _ _
| Color.downR => Fermion.altRightContraction_basis _ _
| Color.up => Lorentz.contrCoContraction_basis _ _
| Color.down => Lorentz.coContrContraction_basis _ _
2024-10-29 11:23:08 +00:00
instance {n : } {c : Fin n → complexLorentzTensor.C} :
2024-10-29 10:37:18 +00:00
DecidableEq (OverColor.mk c).left := instDecidableEqFin n
2024-10-29 11:23:08 +00:00
instance {n : } {c : Fin n → complexLorentzTensor.C} :
2024-10-29 10:37:18 +00:00
Fintype (OverColor.mk c).left := Fin.fintype n
instance {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ σ' : OverColor.mk c ⟶ OverColor.mk c1) :
Decidable (σ = σ') :=
decidable_of_iff _ (OverColor.Hom.ext_iff σ σ')
end complexLorentzTensor
2024-10-11 15:47:35 +00:00
end