PhysLean/HepLean/Tensors/ComplexLorentz/PauliMatrices/Basis.lean

633 lines
28 KiB
Text
Raw Normal View History

2024-10-29 11:10:26 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.ComplexLorentz.PauliMatrices.Basic
import HepLean.Tensors.ComplexLorentz.Basis
/-!
## Pauli matrices and the basis of complex Lorentz tensors
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace complexLorentzTensor
open Fermion
/-!
## Expanding pauliContr in a basis.
-/
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
lemma pauliContr_in_basis : {pauliContr | μ α β}ᵀ.tensor =
basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0)
- I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0)
- basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [tensorNode_pauliContr]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constThreeNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [PauliMatrix.asConsTensor_apply_one, PauliMatrix.asTensor_expand]
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V,
Fin.isValue, map_sub, map_add, _root_.map_smul]
congr 1
congr 1
congr 1
congr 1
congr 1
congr 1
congr 1
all_goals
erw [tripleIsoSep_tmul, basisVector]
apply congrArg
try apply congrArg
funext i
match i with
| (0 : Fin 3) =>
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexContrBasisFin4 _
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
| (1 : Fin 3) => rfl
| (2 : Fin 3) => rfl
lemma pauliContr_basis_expand_tree : {pauliContr | μ α β}ᵀ.tensor =
(TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
TensorTree.add (smul (-I) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (smul I (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
(smul (-1) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
rw [pauliContr_in_basis]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
smul_tensor, neg_smul, one_smul]
rfl
/-- The map to colors one gets when contracting with Pauli matrices on the right. -/
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) :=
(Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(TensorTree.prod t (tensorNode pauliContr)).tensor = (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
(TensorTree.smul (-1) (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
rw [prod_tensor_eq_snd <| pauliContr_basis_expand_tree]
rw [prod_add _ _ _]
rw [add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _]
lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) =
complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t (tensorNode pauliContr))).tensor =
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
/- Moving contr over add. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contr over smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_smul _ _]
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(tensorNode pauliContr))).tensor = ((contr i j h ((tensorNode
(basisVector c' (b' 0 0 0))))).add
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) (contr i j h ((tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [contr_pauliMatrix_basis_tree_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl
/-- The map to color which appears when contracting a basis vector with
puali matrices. -/
def pauliMatrixBasisProdMap
{n : } {c : Fin n → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
(i : Fin (n + (Nat.succ 0).succ.succ)) →
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR]
(finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
/-- The new basis vectors which appear when contracting pauli matrices with
basis vectors. -/
def basisVectorContrPauli {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(i1 i2 i3 : Fin 4) :=
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
(i.succAbove (j.succAbove k))
basisVector c' (b' i1 i2 i3)
lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
(i.succAbove (j.succAbove k))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(tensorNode pauliContr))).tensor =
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0))
(tensorNode (basisVector c' (b' 0 0 0))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1))
(tensorNode (basisVector c' (b' 0 1 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1))
(tensorNode (basisVector c' (b' 1 0 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0))
(tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) ((TensorTree.smul
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
(tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I ((TensorTree.smul
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
(tensorNode (basisVector c' (b' 2 1 0)))))).add
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0))
(tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) ((TensorTree.smul
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [basis_contr_pauliMatrix_basis_tree_expand']
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree _]
rfl
lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(tensorNode pauliContr))).tensor =
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) •
(basisVectorContrPauli i j b 0 0 0)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) •
(basisVectorContrPauli i j b 0 1 1)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) •
(basisVectorContrPauli i j b 1 0 1)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) •
(basisVectorContrPauli i j b 1 1 0)
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) •
(basisVectorContrPauli i j b 2 0 1)
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) •
(basisVectorContrPauli i j b 2 1 0)
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) •
(basisVectorContrPauli i j b 3 0 0)
+ (-1 : ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) •
(basisVectorContrPauli i j b 3 1 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero,
Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor,
tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg]
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
rfl
/-!
## Expanding pauliCo in a basis.
-/
/-- The map to color one gets when lowering the indices of pauli matrices. -/
def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1)
lemma pauliMatrix_contr_down_0 :
(contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(tensorNode pauliContr)))).tensor
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1 :
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
pauliContr | μ α β}ᵀ.tensor
= basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2 :
{(basisVector ![Color.down, Color.down] fun x => 2) | μ ν
pauliContr | ν α β}ᵀ.tensor
= (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 2
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3 :
{(basisVector ![Color.down, Color.down] fun x => 3) | μ ν
pauliContr | ν α β}ᵀ.tensor
= basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
· rw [basisVectorContrPauli]
congr 1
congr 1
funext k
fin_cases k <;> rfl
lemma pauliCo_basis_expand : pauliCo
= basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
- basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
+ I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
- I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
- basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
conv =>
lhs
rw [pauliCo]
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
simp only [tensorNode_tensor, add_tensor, smul_tensor]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul]
conv =>
lhs; lhs;
rw [pauliMatrix_contr_down_0]
conv =>
lhs; rhs; lhs; rhs;
rw [pauliMatrix_contr_down_1]
conv =>
lhs; rhs; rhs; lhs; rhs;
rw [pauliMatrix_contr_down_2]
conv =>
lhs; rhs; rhs; rhs; rhs;
rw [pauliMatrix_contr_down_3]
simp only [neg_smul, one_smul]
abel
lemma pauliCo_basis_expand_tree : {pauliCo | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul I (tensorNode
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-I) (tensorNode
(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
(tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
rw [pauliCo_basis_expand]
simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul,
one_smul]
rfl
lemma pauliCo_prod_basis_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(prod (tensorNode pauliCo) t).tensor =
(((tensorNode
(basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
(((tensorNode
(basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul I ((tensorNode
(basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-I) ((tensorNode
(basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
((tensorNode
(basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
t)))))))).tensor := by
rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree]
/- Moving the prod through additions. -/
rw [add_prod _ _ _]
rw [add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <|
smul_prod _ _ _]
end complexLorentzTensor