PhysLean/HepLean/PerturbationTheory/FieldOpFreeAlgebra/SuperCommute.lean

886 lines
39 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-02-03 12:12:36 +00:00
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.Basic
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.Grading
/-!
# Super Commute
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
2025-02-03 11:05:43 +00:00
namespace FieldOpFreeAlgebra
/-!
2025-02-03 11:05:43 +00:00
## The super commutor on the FieldOpFreeAlgebra.
-/
open FieldStatistic
2025-02-05 05:44:40 +00:00
/-- For a field specification `𝓕`, the super commutator `superCommuteF` is defined as the linear
map `𝓕.FieldOpFreeAlgebra →ₗ[] 𝓕.FieldOpFreeAlgebra →ₗ[] 𝓕.FieldOpFreeAlgebra` such that
`superCommuteF (φ₀ᶜ…φₙᵃ) (φ₀'ᶜ…φₙ'ᶜ)` is equal to
`φ₀ᶜ…φₙᵃ * φ₀'ᶜ…φₙ'ᶜ - 𝓢(φ₀ᶜ…φₙᵃ, φ₀'ᶜ…φₙ'ᶜ) φ₀'ᶜ…φₙ'ᶜ * φ₀ᶜ…φₙᵃ`.
The notation `[a, b]ₛca` is used for this super commutator. -/
2025-02-03 11:42:56 +00:00
noncomputable def superCommuteF : 𝓕.FieldOpFreeAlgebra →ₗ[] 𝓕.FieldOpFreeAlgebra →ₗ[]
𝓕.FieldOpFreeAlgebra :=
Basis.constr ofCrAnListFBasis fun φs =>
Basis.constr ofCrAnListFBasis fun φs' =>
ofCrAnListF (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF (φs' ++ φs)
2025-02-05 05:44:40 +00:00
@[inherit_doc superCommuteF]
2025-02-03 11:05:43 +00:00
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "[" φs "," φs' "]ₛca" => superCommuteF φs φs'
/-!
## The super commutor of different types of elements
-/
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofCrAnListF (φs φs' : List 𝓕.CrAnFieldOp) :
[ofCrAnListF φs, ofCrAnListF φs']ₛca =
ofCrAnListF (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF (φs' ++ φs) := by
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
simp only [superCommuteF, Basis.constr_basis]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF (φ φ' : 𝓕.CrAnFieldOp) :
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca =
ofCrAnOpF φ * ofCrAnOpF φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnOpF φ' * ofCrAnOpF φ := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
rw [superCommuteF_ofCrAnListF_ofCrAnListF, ofCrAnListF_append]
congr
rw [ofCrAnListF_append]
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofFieldOpFsList (φcas : List 𝓕.CrAnFieldOp) (φs : List 𝓕.FieldOp) :
[ofCrAnListF φcas, ofFieldOpListF φs]ₛca = ofCrAnListF φcas * ofFieldOpListF φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofCrAnListF φcas := by
conv_lhs => rw [ofFieldOpListF_sum]
rw [map_sum]
conv_lhs =>
enter [2, x]
rw [superCommuteF_ofCrAnListF_ofCrAnListF, CrAnSection.statistics_eq_state_statistics,
ofCrAnListF_append, ofCrAnListF_append]
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
← Finset.sum_mul, ← ofFieldOpListF_sum]
simp
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofFieldOpListF_ofFieldOpFsList (φ : List 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
[ofFieldOpListF φ, ofFieldOpListF φs]ₛca = ofFieldOpListF φ * ofFieldOpListF φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpListF φ := by
conv_lhs => rw [ofFieldOpListF_sum]
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, x]
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList]
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofFieldOpListF_sum]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofFieldOpF_ofFieldOpFsList (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
2025-02-03 11:13:23 +00:00
[ofFieldOpF φ, ofFieldOpListF φs]ₛca = ofFieldOpF φ * ofFieldOpListF φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpF φ := by
2025-02-03 11:42:56 +00:00
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList,
ofFieldOpListF_singleton]
simp
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofFieldOpListF_ofFieldOpF (φs : List 𝓕.FieldOp) (φ : 𝓕.FieldOp) :
2025-02-03 11:13:23 +00:00
[ofFieldOpListF φs, ofFieldOpF φ]ₛca = ofFieldOpListF φs * ofFieldOpF φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs := by
2025-02-03 11:42:56 +00:00
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList,
ofFieldOpListF_singleton]
simp
2025-02-03 11:28:14 +00:00
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) :
2025-01-30 07:16:19 +00:00
[anPartF φ, crPartF φ']ₛca = anPartF φ * crPartF φ' -
2025-01-30 06:24:17 +00:00
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * anPartF φ := by
match φ, φ' with
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ, _ =>
simp
2025-02-03 11:28:14 +00:00
| _, FieldOp.outAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
2025-02-03 11:28:14 +00:00
FieldStatistic.ofList_singleton, Function.comp_apply, crAnFieldOpToFieldOp_prod, ←
ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ, FieldOp.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.FieldOp) :
2025-01-30 07:16:19 +00:00
[crPartF φ, anPartF φ']ₛca = crPartF φ * anPartF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ := by
match φ, φ' with
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ, _ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
2025-02-03 11:28:14 +00:00
| _, FieldOp.inAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ, FieldOp.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.FieldOp) :
2025-01-30 07:16:19 +00:00
[crPartF φ, crPartF φ']ₛca = crPartF φ * crPartF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ := by
match φ, φ' with
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ, _ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
2025-02-03 11:28:14 +00:00
| _, FieldOp.outAsymp φ =>
2025-01-30 11:08:10 +00:00
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ, FieldOp.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.FieldOp) :
2025-01-30 06:24:17 +00:00
[anPartF φ, anPartF φ']ₛca =
2025-01-30 07:16:19 +00:00
anPartF φ * anPartF φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ := by
match φ, φ' with
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ, _ =>
simp
2025-02-03 11:28:14 +00:00
| _, FieldOp.inAsymp φ =>
simp
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ, FieldOp.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ, FieldOp.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ, FieldOp.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
simp [crAnStatistics, ← ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_crPartF_ofFieldOpListF (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
[crPartF φ, ofFieldOpListF φs]ₛca =
crPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs *
2025-01-30 06:24:17 +00:00
crPartF φ := by
match φ with
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
simp [crAnStatistics]
2025-02-03 11:28:14 +00:00
| FieldOp.position φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
simp [crAnStatistics]
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ =>
simp
2025-02-03 11:28:14 +00:00
lemma superCommuteF_anPartF_ofFieldOpListF (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
[anPartF φ, ofFieldOpListF φs]ₛca =
anPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofFieldOpListF φs * anPartF φ := by
match φ with
2025-02-03 11:28:14 +00:00
| FieldOp.inAsymp φ =>
simp
2025-02-03 11:28:14 +00:00
| FieldOp.position φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
simp [crAnStatistics]
2025-02-03 11:28:14 +00:00
| FieldOp.outAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
simp [crAnStatistics]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_crPartF_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
2025-02-03 11:13:23 +00:00
[crPartF φ, ofFieldOpF φ']ₛca =
crPartF φ * ofFieldOpF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOpF φ' * crPartF φ := by
rw [← ofFieldOpListF_singleton, superCommuteF_crPartF_ofFieldOpListF]
simp
2025-02-03 11:28:14 +00:00
lemma superCommuteF_anPartF_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
2025-02-03 11:13:23 +00:00
[anPartF φ, ofFieldOpF φ']ₛca =
anPartF φ * ofFieldOpF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOpF φ' * anPartF φ := by
rw [← ofFieldOpListF_singleton, superCommuteF_anPartF_ofFieldOpListF]
simp
/-!
## Mul equal superCommuteF
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
multiplication with a sign plus the super commutor.
-/
2025-02-03 11:28:14 +00:00
lemma ofCrAnListF_mul_ofCrAnListF_eq_superCommuteF (φs φs' : List 𝓕.CrAnFieldOp) :
ofCrAnListF φs * ofCrAnListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF φs' * ofCrAnListF φs
+ [ofCrAnListF φs, ofCrAnListF φs']ₛca := by
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
simp [ofCrAnListF_append]
2025-02-03 11:28:14 +00:00
lemma ofCrAnOpF_mul_ofCrAnListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp) (φs' : List 𝓕.CrAnFieldOp) :
ofCrAnOpF φ * ofCrAnListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnListF φs' * ofCrAnOpF φ
+ [ofCrAnOpF φ, ofCrAnListF φs']ₛca := by
rw [← ofCrAnListF_singleton, ofCrAnListF_mul_ofCrAnListF_eq_superCommuteF]
simp
2025-02-03 11:28:14 +00:00
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.FieldOp) :
2025-02-03 11:42:56 +00:00
ofFieldOpListF φs * ofFieldOpListF φs' =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
+ [ofFieldOpListF φs, ofFieldOpListF φs']ₛca := by
2025-02-03 11:13:23 +00:00
rw [superCommuteF_ofFieldOpListF_ofFieldOpFsList]
simp
2025-02-03 11:28:14 +00:00
lemma ofFieldOpF_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.FieldOp) (φs' : List 𝓕.FieldOp) :
2025-02-03 11:13:23 +00:00
ofFieldOpF φ * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpF φ
+ [ofFieldOpF φ, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofFieldOpF_ofFieldOpFsList]
simp
2025-02-03 11:28:14 +00:00
lemma ofFieldOpListF_mul_ofFieldOpF_eq_superCommuteF (φs : List 𝓕.FieldOp) (φ : 𝓕.FieldOp) :
2025-02-03 11:13:23 +00:00
ofFieldOpListF φs * ofFieldOpF φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs
+ [ofFieldOpListF φs, ofFieldOpF φ]ₛca := by
rw [superCommuteF_ofFieldOpListF_ofFieldOpF]
simp
2025-02-03 11:28:14 +00:00
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
2025-01-30 06:24:17 +00:00
crPartF φ * anPartF φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ +
[crPartF φ, anPartF φ']ₛca := by
rw [superCommuteF_crPartF_anPartF]
simp
2025-02-03 11:28:14 +00:00
lemma anPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
2025-01-30 06:24:17 +00:00
anPartF φ * crPartF φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
crPartF φ' * anPartF φ +
[anPartF φ, crPartF φ']ₛca := by
rw [superCommuteF_anPartF_crPartF]
simp
2025-02-03 11:28:14 +00:00
lemma crPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
2025-01-30 06:24:17 +00:00
crPartF φ * crPartF φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ +
[crPartF φ, crPartF φ']ₛca := by
rw [superCommuteF_crPartF_crPartF]
simp
2025-02-03 11:28:14 +00:00
lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
2025-01-30 06:24:17 +00:00
anPartF φ * anPartF φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ +
[anPartF φ, anPartF φ']ₛca := by
rw [superCommuteF_anPartF_anPartF]
simp
2025-02-03 11:42:56 +00:00
lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp)
(φs' : List 𝓕.FieldOp) : ofCrAnListF φs * ofFieldOpListF φs' =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnListF φs
+ [ofCrAnListF φs, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList]
simp
/-!
## Symmetry of the super commutor.
-/
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofCrAnListF_symm (φs φs' : List 𝓕.CrAnFieldOp) :
[ofCrAnListF φs, ofCrAnListF φs']ₛca =
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnListF φs', ofCrAnListF φs]ₛca := by
rw [superCommuteF_ofCrAnListF_ofCrAnListF, superCommuteF_ofCrAnListF_ofCrAnListF, smul_sub]
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_symm (φ φ' : 𝓕.CrAnFieldOp) :
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca =
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnOpF φ', ofCrAnOpF φ]ₛca := by
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF, superCommuteF_ofCrAnOpF_ofCrAnOpF]
rw [smul_sub]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
/-!
## Splitting the super commutor on lists into sums.
-/
2025-01-30 07:16:19 +00:00
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofCrAnListF_cons (φ : 𝓕.CrAnFieldOp) (φs φs' : List 𝓕.CrAnFieldOp) :
[ofCrAnListF φs, ofCrAnListF (φ :: φs')]ₛca =
[ofCrAnListF φs, ofCrAnOpF φ]ₛca * ofCrAnListF φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
• ofCrAnOpF φ * [ofCrAnListF φs, ofCrAnListF φs']ₛca := by
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
conv_rhs =>
lhs
2025-02-03 11:42:56 +00:00
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF, sub_mul,
← ofCrAnListF_append]
rhs
rw [FieldStatistic.ofList_singleton, ofCrAnListF_append, ofCrAnListF_singleton, smul_mul_assoc,
mul_assoc, ← ofCrAnListF_append]
conv_rhs =>
rhs
rw [superCommuteF_ofCrAnListF_ofCrAnListF, mul_sub, smul_mul_assoc]
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
rw [← ofCrAnListF_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp only [instCommGroup, map_mul, mul_comm]
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_cons (φ : 𝓕.FieldOp) (φs : List 𝓕.CrAnFieldOp)
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, ofFieldOpListF (φ :: φs')]ₛca =
[ofCrAnListF φs, ofFieldOpF φ]ₛca * ofFieldOpListF φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * [ofCrAnListF φs, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList]
conv_rhs =>
lhs
rw [← ofFieldOpListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList, sub_mul, mul_assoc,
← ofFieldOpListF_append]
rhs
rw [FieldStatistic.ofList_singleton, ofFieldOpListF_singleton, smul_mul_assoc,
smul_mul_assoc, mul_assoc]
conv_rhs =>
rhs
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList, mul_sub, smul_mul_assoc]
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
sub_add_sub_cancel, sub_right_inj]
rw [ofFieldOpListF_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp [mul_comm]
2025-01-24 11:09:25 +00:00
/--
Within the creation and annihilation algebra, we have that
2025-01-24 11:25:22 +00:00
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
2025-01-24 11:09:25 +00:00
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
-/
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum (φs : List 𝓕.CrAnFieldOp) :
(φs' : List 𝓕.CrAnFieldOp) → [ofCrAnListF φs, ofCrAnListF φs']ₛca =
2025-01-24 11:09:25 +00:00
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofCrAnListF (φs'.take n) * [ofCrAnListF φs, ofCrAnOpF (φs'.get n)]ₛca *
ofCrAnListF (φs'.drop (n + 1))
| [] => by
simp [← ofCrAnListF_nil, superCommuteF_ofCrAnListF_ofCrAnListF]
| φ :: φs' => by
2025-02-03 11:42:56 +00:00
rw [superCommuteF_ofCrAnListF_ofCrAnListF_cons,
superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofCrAnListF_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
2025-02-03 11:42:56 +00:00
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnFieldOp) :
(φs' : List 𝓕.FieldOp) →
[ofCrAnListF φs, ofFieldOpListF φs']ₛca =
2025-01-24 11:09:25 +00:00
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofFieldOpListF (φs'.take n) * [ofCrAnListF φs, ofFieldOpF (φs'.get n)]ₛca *
ofFieldOpListF (φs'.drop (n + 1))
| [] => by
simp only [superCommuteF_ofCrAnListF_ofFieldOpFsList, instCommGroup, ofList_empty,
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
simp
| φ :: φs' => by
rw [superCommuteF_ofCrAnListF_ofFieldOpListF_cons,
superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofFieldOpListF_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
2025-02-03 11:28:14 +00:00
lemma summerCommute_jacobi_ofCrAnListF (φs1 φs2 φs3 : List 𝓕.CrAnFieldOp) :
[ofCrAnListF φs1, [ofCrAnListF φs2, ofCrAnListF φs3]ₛca]ₛca =
2025-01-29 16:06:28 +00:00
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs3) •
(- 𝓢(𝓕 |>ₛ φs2, 𝓕 |>ₛ φs3) • [ofCrAnListF φs3, [ofCrAnListF φs1, ofCrAnListF φs2]ₛca]ₛca -
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs2) • [ofCrAnListF φs2, [ofCrAnListF φs3, ofCrAnListF φs1]ₛca]ₛca) := by
repeat rw [superCommuteF_ofCrAnListF_ofCrAnListF]
2025-01-29 16:41:10 +00:00
simp only [instCommGroup, map_sub, map_smul, neg_smul]
repeat rw [superCommuteF_ofCrAnListF_ofCrAnListF]
2025-01-29 16:06:28 +00:00
simp only [instCommGroup.eq_1, ofList_append_eq_mul, List.append_assoc]
by_cases h1 : (𝓕 |>ₛ φs1) = bosonic <;>
by_cases h2 : (𝓕 |>ₛ φs2) = bosonic <;>
by_cases h3 : (𝓕 |>ₛ φs3) = bosonic
2025-01-29 16:41:10 +00:00
· simp only [h1, h2, h3, mul_self, bosonic_exchangeSign, one_smul, exchangeSign_bosonic, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [h1, h2, bosonic_exchangeSign, one_smul, mul_bosonic, mul_self, map_one,
exchangeSign_bosonic, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [h1, h3, mul_bosonic, bosonic_exchangeSign, one_smul, exchangeSign_bosonic, neg_sub,
mul_self, map_one]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_self, bosonic_exchangeSign, one_smul,
fermionic_exchangeSign_fermionic, neg_smul, neg_sub, bosonic_mul_fermionic, sub_neg_eq_add,
mul_bosonic, smul_add, exchangeSign_bosonic]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_self, map_one, one_smul, exchangeSign_bosonic, mul_bosonic,
bosonic_exchangeSign, bosonic_mul_fermionic, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, bosonic_mul_fermionic, fermionic_exchangeSign_fermionic, neg_smul,
one_smul, sub_neg_eq_add, bosonic_exchangeSign, mul_bosonic, smul_add, exchangeSign_bosonic,
neg_sub, mul_self]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_bosonic, fermionic_exchangeSign_fermionic, neg_smul, one_smul,
sub_neg_eq_add, exchangeSign_bosonic, bosonic_mul_fermionic, smul_add, mul_self,
bosonic_exchangeSign, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_self, map_one, one_smul, fermionic_exchangeSign_fermionic, neg_smul,
neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-30 07:16:19 +00:00
2025-01-28 11:53:24 +00:00
/-!
## Interaction with grading.
-/
2025-02-03 11:05:43 +00:00
lemma superCommuteF_grade {a b : 𝓕.FieldOpFreeAlgebra} {f1 f2 : FieldStatistic}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule f1) (hb : b ∈ statisticSubmodule f2) :
[a, b]ₛca ∈ statisticSubmodule (f1 + f2) := by
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca ∈ statisticSubmodule (f1 + f2)
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, p]
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule f1) : Prop :=
[a2, ofCrAnListF φs]ₛca ∈ statisticSubmodule (f1 + f2)
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
2025-01-28 11:53:24 +00:00
apply Submodule.sub_mem _
· apply ofCrAnListF_mem_statisticSubmodule_of
2025-01-28 11:53:24 +00:00
rw [ofList_append_eq_mul, hφs, hφs']
· apply Submodule.smul_mem
apply ofCrAnListF_mem_statisticSubmodule_of
2025-01-28 11:53:24 +00:00
rw [ofList_append_eq_mul, hφs, hφs']
rw [mul_comm]
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_add, LinearMap.add_apply, p]
2025-01-28 11:53:24 +00:00
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_smul, LinearMap.smul_apply, p]
2025-01-28 11:53:24 +00:00
exact Submodule.smul_mem _ c hp1
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_add, p]
2025-01-28 11:53:24 +00:00
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_smul, p]
2025-01-28 11:53:24 +00:00
exact Submodule.smul_mem _ c hp1
· exact hb
2025-02-03 11:05:43 +00:00
lemma superCommuteF_bosonic_bosonic {a b : 𝓕.FieldOpFreeAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 - a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a2, ofCrAnListF φs]ₛca = a2 * ofCrAnListF φs - ofCrAnListF φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
simp [hφs, ofCrAnListF_append]
2025-01-28 11:53:24 +00:00
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, mul_add, add_mul]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
2025-02-03 11:05:43 +00:00
lemma superCommuteF_bosonic_fermionic {a b : 𝓕.FieldOpFreeAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b - b * a := by
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 - a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a2, ofCrAnListF φs]ₛca = a2 * ofCrAnListF φs - ofCrAnListF φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
simp [hφs, hφs', ofCrAnListF_append]
2025-01-28 11:53:24 +00:00
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, mul_add, add_mul]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
2025-02-03 11:05:43 +00:00
lemma superCommuteF_fermionic_bonsonic {a b : 𝓕.FieldOpFreeAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 - a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a2, ofCrAnListF φs]ₛca = a2 * ofCrAnListF φs - ofCrAnListF φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
simp [hφs, hφs', ofCrAnListF_append]
2025-01-28 11:53:24 +00:00
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [map_add, mul_add, add_mul, p]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
2025-02-03 11:05:43 +00:00
lemma superCommuteF_bonsonic {a b : 𝓕.FieldOpFreeAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj a]
simp only [map_add, LinearMap.add_apply]
rw [superCommuteF_bosonic_bosonic (by simp) hb, superCommuteF_fermionic_bonsonic (by simp) hb]
2025-01-28 11:53:24 +00:00
simp only [add_mul, mul_add]
abel
2025-02-03 11:05:43 +00:00
lemma bosonic_superCommuteF {a b : 𝓕.FieldOpFreeAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj b]
simp only [map_add, LinearMap.add_apply]
rw [superCommuteF_bosonic_bosonic ha (by simp), superCommuteF_bosonic_fermionic ha (by simp)]
2025-01-28 11:53:24 +00:00
simp only [add_mul, mul_add]
abel
2025-02-03 11:42:56 +00:00
lemma superCommuteF_bonsonic_symm {a b : 𝓕.FieldOpFreeAlgebra}
(hb : b ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommuteF hb, superCommuteF_bonsonic hb]
2025-01-28 11:53:24 +00:00
simp
2025-02-03 11:42:56 +00:00
lemma bonsonic_superCommuteF_symm {a b : 𝓕.FieldOpFreeAlgebra}
(ha : a ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommuteF ha, superCommuteF_bonsonic ha]
2025-01-28 11:53:24 +00:00
simp
2025-02-03 11:05:43 +00:00
lemma superCommuteF_fermionic_fermionic {a b : 𝓕.FieldOpFreeAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b + b * a := by
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 + a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
2025-02-03 11:05:43 +00:00
let p (a2 : 𝓕.FieldOpFreeAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a2, ofCrAnListF φs]ₛca = a2 * ofCrAnListF φs + ofCrAnListF φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
simp [hφs, hφs', ofCrAnListF_append]
2025-01-28 11:53:24 +00:00
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [map_add, mul_add, add_mul, p]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
2025-02-03 11:05:43 +00:00
lemma superCommuteF_fermionic_fermionic_symm {a b : 𝓕.FieldOpFreeAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = [b, a]ₛca := by
rw [superCommuteF_fermionic_fermionic ha hb]
rw [superCommuteF_fermionic_fermionic hb ha]
2025-01-28 11:53:24 +00:00
abel
2025-02-03 11:05:43 +00:00
lemma superCommuteF_expand_bosonicProj_fermionicProj (a b : 𝓕.FieldOpFreeAlgebra) :
[a, b]ₛca = bosonicProj a * bosonicProj b - bosonicProj b * bosonicProj a +
bosonicProj a * fermionicProj b - fermionicProj b * bosonicProj a +
fermionicProj a * bosonicProj b - bosonicProj b * fermionicProj a +
fermionicProj a * fermionicProj b + fermionicProj b * fermionicProj a := by
conv_lhs => rw [← bosonicProj_add_fermionicProj a, ← bosonicProj_add_fermionicProj b]
2025-01-29 16:41:10 +00:00
simp only [map_add, LinearMap.add_apply]
rw [superCommuteF_bonsonic (by simp),
superCommuteF_fermionic_bonsonic (by simp) (by simp),
superCommuteF_bosonic_fermionic (by simp) (by simp),
superCommuteF_fermionic_fermionic (by simp) (by simp)]
abel
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnFieldOp) :
[ofCrAnListF φs, ofCrAnListF φs']ₛca ∈ statisticSubmodule bosonic
[ofCrAnListF φs, ofCrAnListF φs']ₛca ∈ statisticSubmodule fermionic := by
2025-01-28 11:53:24 +00:00
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
apply ofCrAnListF_mem_statisticSubmodule_of _ _ h1
apply ofCrAnListF_mem_statisticSubmodule_of _ _ h2
2025-01-28 11:53:24 +00:00
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
apply ofCrAnListF_mem_statisticSubmodule_of _ _ h1
apply ofCrAnListF_mem_statisticSubmodule_of _ _ (by simpa using h2)
2025-01-28 11:53:24 +00:00
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
apply ofCrAnListF_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnListF_mem_statisticSubmodule_of _ _ h2
2025-01-28 11:53:24 +00:00
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
apply ofCrAnListF_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnListF_mem_statisticSubmodule_of _ _ (by simpa using h2)
2025-02-03 11:28:14 +00:00
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic (φ φ' : 𝓕.CrAnFieldOp) :
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca ∈ statisticSubmodule bosonic
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca ∈ statisticSubmodule fermionic := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
exact superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ] [φ']
2025-02-03 11:28:14 +00:00
lemma superCommuteF_superCommuteF_ofCrAnOpF_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnFieldOp) :
[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca ∈ statisticSubmodule bosonic
[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca ∈ statisticSubmodule fermionic := by
rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φ2 φ3 with hs | hs
<;> rcases ofCrAnOpF_bosonic_or_fermionic φ1 with h1 | h1
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
2025-01-28 11:53:24 +00:00
2025-02-03 11:28:14 +00:00
lemma superCommuteF_bosonic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnFieldOp)
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule bosonic) :
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
ofCrAnListF (φs.drop (n + 1)) := by
2025-02-03 11:05:43 +00:00
let p (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ statisticSubmodule bosonic) : Prop :=
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
ofCrAnListF (φs.drop (n + 1))
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
2025-01-29 16:41:10 +00:00
simp only [List.get_eq_getElem, p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum]
2025-01-28 11:53:24 +00:00
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
2025-01-29 16:41:10 +00:00
simp_all only [List.get_eq_getElem, map_add, LinearMap.add_apply, p]
2025-01-28 11:53:24 +00:00
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
simp_all [p, Finset.smul_sum]
· exact ha
2025-02-03 11:42:56 +00:00
lemma superCommuteF_fermionic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra)
(φs : List 𝓕.CrAnFieldOp) (ha : a ∈ statisticSubmodule fermionic) :
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
ofCrAnListF (φs.drop (n + 1)) := by
2025-02-03 11:05:43 +00:00
let p (a : 𝓕.FieldOpFreeAlgebra) (ha : a ∈ statisticSubmodule fermionic) : Prop :=
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
ofCrAnListF (φs.drop (n + 1))
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
2025-01-29 16:41:10 +00:00
simp only [instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, p]
rw [superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum]
2025-01-28 11:53:24 +00:00
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
2025-01-29 16:41:10 +00:00
simp_all only [p, instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, map_add,
LinearMap.add_apply]
2025-01-28 11:53:24 +00:00
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
2025-01-29 16:41:10 +00:00
simp_all only [p, instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, map_smul,
LinearMap.smul_apply, Finset.smul_sum, Algebra.mul_smul_comm]
2025-01-28 11:53:24 +00:00
congr
funext x
simp [smul_smul, mul_comm]
· exact ha
2025-02-03 11:28:14 +00:00
lemma statistic_neq_of_superCommuteF_fermionic {φs φs' : List 𝓕.CrAnFieldOp}
(h : [ofCrAnListF φs, ofCrAnListF φs']ₛca ∈ statisticSubmodule fermionic) :
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') [ofCrAnListF φs, ofCrAnListF φs']ₛca = 0 := by
by_cases h0 : [ofCrAnListF φs, ofCrAnListF φs']ₛca = 0
2025-01-28 11:53:24 +00:00
· simp [h0]
2025-01-29 16:41:10 +00:00
simp only [ne_eq, h0, or_false]
2025-01-28 11:53:24 +00:00
by_contra hn
refine h0 (eq_zero_of_bosonic_and_fermionic ?_ h)
by_cases hc : (𝓕 |>ₛ φs) = bosonic
· have h1 : bosonic = bosonic + bosonic := by
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, mul_self]
2025-01-28 11:53:24 +00:00
rfl
rw [h1]
apply superCommuteF_grade
apply ofCrAnListF_mem_statisticSubmodule_of _ _ hc
apply ofCrAnListF_mem_statisticSubmodule_of _ _
2025-01-28 11:53:24 +00:00
rw [← hn, hc]
· have h1 : bosonic = fermionic + fermionic := by
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, mul_self]
2025-01-28 11:53:24 +00:00
rfl
rw [h1]
apply superCommuteF_grade
apply ofCrAnListF_mem_statisticSubmodule_of _ _
2025-01-28 11:53:24 +00:00
simpa using hc
apply ofCrAnListF_mem_statisticSubmodule_of _ _
2025-01-28 11:53:24 +00:00
rw [← hn]
simpa using hc
2025-02-03 11:05:43 +00:00
end FieldOpFreeAlgebra
end FieldSpecification