PhysLean/HepLean/SpaceTime/LorentzGroup/Proper.lean

136 lines
4.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
2024-07-12 16:39:44 -04:00
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Basic
/-!
# The Proper Lorentz Group
2024-07-11 09:55:23 -04:00
The proper Lorentz group is the subgroup of the Lorentz group with determinant `1`.
We define the give a series of lemmas related to the determinant of the Lorentz group.
-/
noncomputable section
open Matrix
open Complex
open ComplexConjugate
namespace LorentzGroup
open minkowskiMetric
variable {d : }
2024-07-11 09:55:23 -04:00
/-- The determinant of a member of the Lorentz group is `1` or `-1`. -/
lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 Λ.1.det = -1 := by
have h1 := (congrArg det ((mem_iff_self_mul_dual).mp Λ.2))
simp [det_mul, det_dual] at h1
exact mul_self_eq_one_iff.mp h1
2024-07-12 11:23:02 -04:00
local notation "ℤ₂" => Multiplicative (ZMod 2)
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
instance : DiscreteTopology ℤ₂ := by
exact forall_open_iff_discrete.mp fun _ => trivial
instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk
/-- A continuous function from `({-1, 1} : Set )` to `ℤ₂`. -/
@[simps!]
def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
2024-06-13 08:10:08 -04:00
toFun x := if x = ⟨1, Set.mem_insert_of_mem (-1) rfl⟩
then (Additive.toMul 0) else (Additive.toMul (1 : ZMod 2))
continuous_toFun := by
haveI : DiscreteTopology ({-1, 1} : Set ) := discrete_of_t1_of_finite
exact continuous_of_discreteTopology
2024-07-11 09:55:23 -04:00
/-- The continuous map taking a Lorentz matrix to its determinant. -/
def detContinuous : C(𝓛 d, ℤ₂) :=
2024-07-12 11:23:02 -04:00
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
2024-05-22 13:34:53 -04:00
apply Continuous.matrix_det $
Continuous.comp' (continuous_iff_le_induced.mpr fun U a => a) continuous_id'
}
lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
2024-05-22 13:34:53 -04:00
detContinuous Λ = detContinuous Λ' ↔ Λ.1.det = Λ'.1.det := by
apply Iff.intro
intro h
simp [detContinuous] at h
cases' det_eq_one_or_neg_one Λ with h1 h1
2024-07-12 11:23:02 -04:00
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> simp_all [h1, h2, h]
rw [← toMul_zero, @Equiv.apply_eq_iff_eq] at h
2024-06-25 09:18:43 -04:00
· change (0 : Fin 2) = (1 : Fin 2) at h
simp only [Fin.isValue, zero_ne_one] at h
· change (1 : Fin 2) = (0 : Fin 2) at h
simp only [Fin.isValue, one_ne_zero] at h
· intro h
simp [detContinuous, h]
2024-07-11 09:55:23 -04:00
/-- The representation taking a Lorentz matrix to its determinant. -/
@[simps!]
def detRep : 𝓛 d →* ℤ₂ where
toFun Λ := detContinuous Λ
map_one' := by
2024-05-22 13:34:53 -04:00
simp [detContinuous, lorentzGroupIsGroup]
map_mul' := by
intro Λ1 Λ2
simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero,
mul_ite, mul_one, ite_mul, one_mul]
cases' (det_eq_one_or_neg_one Λ1) with h1 h1
<;> cases' (det_eq_one_or_neg_one Λ2) with h2 h2
<;> simp [h1, h2, detContinuous]
rfl
lemma detRep_continuous : Continuous (@detRep d) := detContinuous.2
lemma det_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
2024-05-22 13:34:53 -04:00
Λ.1.det = Λ'.1.det := by
obtain ⟨s, hs, hΛ'⟩ := h
let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous
haveI : PreconnectedSpace s := isPreconnected_iff_preconnectedSpace.mp hs.1
simpa [f, detContinuous_eq_iff_det_eq] using
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
lemma detRep_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
2024-05-20 16:20:26 -04:00
detRep Λ = detRep Λ' := by
simp [detRep_apply, detRep_apply, detContinuous]
rw [det_on_connected_component h]
lemma det_of_joined {Λ Λ' : LorentzGroup d} (h : Joined Λ Λ') : Λ.1.det = Λ'.1.det :=
det_on_connected_component $ pathComponent_subset_component _ h
/-- A Lorentz Matrix is proper if its determinant is 1. -/
@[simp]
def IsProper (Λ : LorentzGroup d) : Prop := Λ.1.det = 1
instance : DecidablePred (@IsProper d) := by
intro Λ
apply Real.decidableEq
lemma IsProper_iff (Λ : LorentzGroup d) : IsProper Λ ↔ detRep Λ = 1 := by
2024-06-13 08:10:08 -04:00
rw [show 1 = detRep 1 from Eq.symm (MonoidHom.map_one detRep)]
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
2024-05-22 13:34:53 -04:00
simp only [IsProper, lorentzGroupIsGroup_one_coe, det_one]
2024-07-12 16:22:06 -04:00
lemma id_IsProper : @IsProper d 1 := by
2024-05-20 16:20:26 -04:00
simp [IsProper]
lemma isProper_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
2024-05-20 16:20:26 -04:00
IsProper Λ ↔ IsProper Λ' := by
simp [detRep_apply, detRep_apply, detContinuous]
rw [det_on_connected_component h]
end LorentzGroup
end