PhysLean/HepLean/PerturbationTheory/Wick/Signs/KoszulSign.lean

203 lines
7.4 KiB
Text
Raw Normal View History

2024-12-19 14:25:09 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Algebra.FreeAlgebra
import Mathlib.Algebra.Lie.OfAssociative
import Mathlib.Analysis.Complex.Basic
import HepLean.PerturbationTheory.Wick.Signs.KoszulSignInsert
/-!
2024-12-20 11:54:41 +00:00
# Koszul sign
2024-12-19 14:25:09 +00:00
-/
namespace Wick
open HepLean.List
2024-12-20 11:54:41 +00:00
open FieldStatistic
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
2024-12-19 14:25:09 +00:00
/-- Gives a factor of `- 1` for every fermion-fermion (`q` is `1`) crossing that occurs when sorting
a list of based on `r`. -/
2024-12-20 11:54:41 +00:00
def koszulSign (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le] :
List 𝓕
2024-12-19 14:25:09 +00:00
| [] => 1
2024-12-20 11:54:41 +00:00
| a :: l => koszulSignInsert q le a l * koszulSign q le l
2024-12-19 14:25:09 +00:00
2024-12-20 11:54:41 +00:00
lemma koszulSign_mul_self (l : List 𝓕) : koszulSign q le l * koszulSign q le l = 1 := by
2024-12-19 14:25:09 +00:00
induction l with
| nil => simp [koszulSign]
| cons a l ih =>
simp only [koszulSign]
2024-12-20 11:54:41 +00:00
trans (koszulSignInsert q le a l * koszulSignInsert q le a l) *
(koszulSign q le l * koszulSign q le l)
2024-12-19 14:25:09 +00:00
ring
rw [ih]
rw [koszulSignInsert_mul_self, mul_one]
@[simp]
2024-12-20 11:54:41 +00:00
lemma koszulSign_freeMonoid_of (i : 𝓕) : koszulSign q le (FreeMonoid.of i) = 1 := by
change koszulSign q le [i] = 1
2024-12-19 14:25:09 +00:00
simp only [koszulSign, mul_one]
rfl
2024-12-20 11:54:41 +00:00
lemma koszulSignInsert_erase_boson {𝓕 : Type} (q : 𝓕 → FieldStatistic)
(le : 𝓕𝓕 → Prop) [DecidableRel le] (r0 : 𝓕) :
(r : List 𝓕) → (n : Fin r.length) → (heq : q (r.get n) = bosonic) →
koszulSignInsert q le r0 (r.eraseIdx n) = koszulSignInsert q le r0 r
2024-12-19 14:25:09 +00:00
| [], _, _ => by
simp
| r1 :: r, ⟨0, h⟩, hr => by
simp only [List.eraseIdx_zero, List.tail_cons]
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
2024-12-20 11:54:41 +00:00
List.getElem_cons_zero] at hr
2024-12-19 14:25:09 +00:00
rw [koszulSignInsert]
simp [hr]
| r1 :: r, ⟨n + 1, h⟩, hr => by
simp only [List.eraseIdx_cons_succ]
rw [koszulSignInsert, koszulSignInsert]
2024-12-20 11:54:41 +00:00
rw [koszulSignInsert_erase_boson q le r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ hr]
2024-12-19 14:25:09 +00:00
2024-12-20 11:54:41 +00:00
lemma koszulSign_erase_boson {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le :𝓕𝓕 → Prop)
[DecidableRel le] :
(r : List 𝓕) → (n : Fin r.length) → (heq : q (r.get n) = bosonic) →
koszulSign q le (r.eraseIdx n) = koszulSign q le r
2024-12-19 14:25:09 +00:00
| [], _ => by
simp
| r0 :: r, ⟨0, h⟩ => by
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
List.getElem_cons_zero, Fin.isValue, List.eraseIdx_zero, List.tail_cons, koszulSign]
intro h
rw [koszulSignInsert_boson]
simp only [one_mul]
exact h
| r0 :: r, ⟨n + 1, h⟩ => by
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, Fin.isValue,
List.eraseIdx_cons_succ]
intro h'
rw [koszulSign, koszulSign]
2024-12-20 11:54:41 +00:00
rw [koszulSign_erase_boson q le r ⟨n, Nat.succ_lt_succ_iff.mp h⟩]
2024-12-19 14:25:09 +00:00
congr 1
2024-12-20 11:54:41 +00:00
rw [koszulSignInsert_erase_boson q le r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ h']
2024-12-19 14:25:09 +00:00
exact h'
2024-12-20 11:54:41 +00:00
lemma koszulSign_insertIdx [IsTotal 𝓕 le] [IsTrans 𝓕 le] (i : 𝓕) :
(r : List 𝓕) → (n : ) → (hn : n ≤ r.length) →
koszulSign q le (List.insertIdx n i r) = insertSign q n i r
* koszulSign q le r
* insertSign q (insertionSortEquiv le (List.insertIdx n i r) ⟨n, by
2024-12-19 14:25:09 +00:00
rw [List.length_insertIdx _ _ hn]
omega⟩) i
2024-12-20 11:54:41 +00:00
(List.insertionSort le (List.insertIdx n i r))
2024-12-19 14:25:09 +00:00
| [], 0, h => by
simp [koszulSign, insertSign, superCommuteCoef, koszulSignInsert]
| [], n + 1, h => by
simp at h
| r0 :: r, 0, h => by
simp only [List.insertIdx_zero, List.insertionSort, List.length_cons, Fin.zero_eta]
rw [koszulSign]
2024-12-20 11:54:41 +00:00
trans koszulSign q le (r0 :: r) * koszulSignInsert q le i (r0 :: r)
2024-12-19 14:25:09 +00:00
ring
simp only [insertionSortEquiv, List.length_cons, Nat.succ_eq_add_one, List.insertionSort,
orderedInsertEquiv, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, HepLean.Fin.equivCons_trans,
Equiv.trans_apply, HepLean.Fin.equivCons_zero, HepLean.Fin.finExtractOne_apply_eq,
Fin.isValue, HepLean.Fin.finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta]
conv_rhs =>
rhs
rhs
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
conv_rhs =>
rhs
rw [← insertSign_insert]
2024-12-20 11:54:41 +00:00
change insertSign q (↑(orderedInsertPos le ((List.insertionSort le (r0 :: r))) i)) i
(List.insertionSort le (r0 :: r))
rw [← koszulSignInsert_eq_insertSign q le]
2024-12-19 14:25:09 +00:00
rw [insertSign_zero]
simp
| r0 :: r, n + 1, h => by
conv_lhs =>
rw [List.insertIdx_succ_cons]
rw [koszulSign]
rw [koszulSign_insertIdx]
conv_rhs =>
rhs
simp only [List.insertIdx_succ_cons]
simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
Equiv.trans_apply, HepLean.Fin.equivCons_succ]
erw [orderedInsertEquiv_fin_succ]
simp only [Fin.eta, Fin.coe_cast]
rhs
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
conv_rhs =>
lhs
rw [insertSign_succ_cons, koszulSign]
ring_nf
conv_lhs =>
lhs
rw [mul_assoc, mul_comm]
rw [mul_assoc]
conv_rhs =>
rw [mul_assoc, mul_assoc]
congr 1
2024-12-20 11:54:41 +00:00
let rs := (List.insertionSort le (List.insertIdx n i r))
2024-12-19 14:25:09 +00:00
have hnsL : n < (List.insertIdx n i r).length := by
rw [List.length_insertIdx _ _]
simp only [List.length_cons, add_le_add_iff_right] at h
omega
exact Nat.le_of_lt_succ h
2024-12-20 11:54:41 +00:00
let ni : Fin rs.length := (insertionSortEquiv le (List.insertIdx n i r))
2024-12-19 14:25:09 +00:00
⟨n, hnsL⟩
let nro : Fin (rs.length + 1) :=
2024-12-20 11:54:41 +00:00
⟨↑(orderedInsertPos le rs r0), orderedInsertPos_lt_length le rs r0⟩
2024-12-19 14:25:09 +00:00
rw [koszulSignInsert_insertIdx, koszulSignInsert_cons]
2024-12-20 11:54:41 +00:00
trans koszulSignInsert q le r0 r * (koszulSignCons q le r0 i *insertSign q ni i rs)
2024-12-19 14:25:09 +00:00
· simp only [rs, ni]
ring
2024-12-20 11:54:41 +00:00
trans koszulSignInsert q le r0 r * (superCommuteCoef q [i] [r0] *
2024-12-19 14:25:09 +00:00
insertSign q (nro.succAbove ni) i (List.insertIdx nro r0 rs))
swap
· simp only [rs, nro, ni]
ring
congr 1
simp only [Fin.succAbove]
have hns : rs.get ni = i := by
simp only [Fin.eta, rs]
rw [← insertionSortEquiv_get]
simp only [Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem, ni]
simp_all only [List.length_cons, add_le_add_iff_right, List.getElem_insertIdx_self]
2024-12-20 11:54:41 +00:00
have hc1 : ni.castSucc < nro → ¬ le r0 i := by
2024-12-19 14:25:09 +00:00
intro hninro
rw [← hns]
2024-12-20 11:54:41 +00:00
exact lt_orderedInsertPos_rel le r0 rs ni hninro
have hc2 : ¬ ni.castSucc < nro → le r0 i := by
2024-12-19 14:25:09 +00:00
intro hninro
rw [← hns]
2024-12-20 11:54:41 +00:00
refine gt_orderedInsertPos_rel le r0 rs ?_ ni hninro
exact List.sorted_insertionSort le (List.insertIdx n i r)
2024-12-19 14:25:09 +00:00
by_cases hn : ni.castSucc < nro
· simp only [hn, ↓reduceIte, Fin.coe_castSucc]
rw [insertSign_insert_gt]
swap
· exact hn
congr 1
rw [koszulSignCons_eq_superComuteCoef]
simp only [hc1 hn, ↓reduceIte]
rw [superCommuteCoef_comm]
· simp only [hn, ↓reduceIte, Fin.val_succ]
rw [insertSign_insert_lt]
rw [← mul_assoc]
congr 1
rw [superCommuteCoef_mul_self]
rw [koszulSignCons]
simp only [hc2 hn, ↓reduceIte]
exact Nat.le_of_not_lt hn
2024-12-20 11:54:41 +00:00
exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le rs r0)
2024-12-19 14:25:09 +00:00
· exact Nat.le_of_lt_succ h
· exact Nat.le_of_lt_succ h
end Wick