PhysLean/HepLean/FeynmanDiagrams/Instances/TwoComplexScalar.lean

424 lines
15 KiB
Text
Raw Normal View History

2024-11-19 16:56:23 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
/-!
# Feynman rules for a two complex scalar fields
This file serves as a demonstration of a new approach to Feynman rules.
-/
namespace TwoComplexScalar
open CategoryTheory
open FeynmanDiagram
open PreFeynmanRule
/-- The colors of edges which one can associate with a vertex for a theory
with two complex scalar fields. -/
inductive 𝓔 where
/-- Corresponds to the first complex scalar field flowing out of a vertex. -/
| complexScalarOut₁ : 𝓔
/-- Corresponds to the first complex scalar field flowing into a vertex. -/
| complexScalarIn₁ : 𝓔
/-- Corresponds to the second complex scalar field flowing out of a vertex. -/
| complexScalarOut₂ : 𝓔
/-- Corresponds to the second complex scalar field flowing into a vertex. -/
| complexScalarIn₂ : 𝓔
/-- The map taking each color to it's dual, specifying how we can contract edges. -/
def ξ : 𝓔𝓔
| 𝓔.complexScalarOut₁ => 𝓔.complexScalarIn₁
| 𝓔.complexScalarIn₁ => 𝓔.complexScalarOut₁
| 𝓔.complexScalarOut₂ => 𝓔.complexScalarIn₂
| 𝓔.complexScalarIn₂ => 𝓔.complexScalarOut₂
/-- The function `ξ` is an involution. -/
lemma ξ_involutive : Function.Involutive ξ := by
intro x
match x with
| 𝓔.complexScalarOut₁ => rfl
| 𝓔.complexScalarIn₁ => rfl
| 𝓔.complexScalarOut₂ => rfl
| 𝓔.complexScalarIn₂ => rfl
/-- The vertices associated with two complex scalars.
We call this type, the type of vertex colors. -/
inductive 𝓥 where
| φ₁φ₁φ₂φ₂ : 𝓥
| φ₁φ₁φ₁φ₁ : 𝓥
| φ₂φ₂φ₂φ₂ : 𝓥
/-- To each vertex, the association of the number of edges. -/
2024-11-21 16:07:44 +00:00
@[nolint unusedArguments]
2024-11-19 16:56:23 +00:00
def 𝓥NoEdges : 𝓥 := fun _ => 4
/-- To each vertex, associates the indexing map of half-edges associated with that edge. -/
def 𝓥Edges (v : 𝓥) : Fin (𝓥NoEdges v) → 𝓔 :=
match v with
| 𝓥.φ₁φ₁φ₂φ₂ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
| (1 : Fin 4) => 𝓔.complexScalarIn₁
| (2 : Fin 4) => 𝓔.complexScalarOut₂
| (3 : Fin 4) => 𝓔.complexScalarIn₂
| 𝓥.φ₁φ₁φ₁φ₁ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
| (1 : Fin 4) => 𝓔.complexScalarIn₁
| (2 : Fin 4) => 𝓔.complexScalarOut₁
| (3 : Fin 4) => 𝓔.complexScalarIn₁
| 𝓥.φ₂φ₂φ₂φ₂ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₂
| (1 : Fin 4) => 𝓔.complexScalarIn₂
| (2 : Fin 4) => 𝓔.complexScalarOut₂
| (3 : Fin 4) => 𝓔.complexScalarIn₂
2024-11-21 16:07:44 +00:00
inductive WickStringLast where
| incoming : WickStringLast
| vertex : WickStringLast
| outgoing : WickStringLast
| final : WickStringLast
open WickStringLast
def FieldString (n : ) : Type := Fin n → 𝓔
inductive WickString : {n : } → (c : FieldString n) → WickStringLast → Type where
| empty : WickString Fin.elim0 incoming
| incoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) (e : 𝓔) :
WickString (Fin.cons e c) incoming
| endIncoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) : WickString c vertex
| vertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) (v : 𝓥) :
WickString (Fin.append (𝓥Edges v) c) vertex
| endVertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) : WickString c outgoing
| outgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) (e : 𝓔) :
WickString (Fin.cons e c) outgoing
| endOutgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) : WickString c final
2024-11-22 10:06:08 +00:00
inductive WickContract : {n : } → (f : FieldString n) →
{k : } → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
| string {n : } {c : Fin n → 𝓔} : WickContract c Fin.elim0 Fin.elim0
| contr {n : } {c : Fin n → 𝓔} {k : }
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n}: (i : Fin n) →
(j : Fin n) → (h : c j = ξ (c i)) →
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
(w : WickContract c b1 b2) →
WickContract c (Fin.snoc b1 i) (Fin.snoc b2 j)
2024-11-21 16:07:44 +00:00
namespace WickContract
/-- The number of nodes of a Wick contraction. -/
2024-11-22 10:06:08 +00:00
def size {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
WickContract c b1 b2 → := fun
2024-11-21 16:07:44 +00:00
| string => 1
2024-11-22 10:06:08 +00:00
| contr _ _ _ _ _ _ _ w => w.size + 1
2024-11-21 16:07:44 +00:00
2024-11-22 10:06:08 +00:00
def boundFst {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
WickContract c b1 b2 → Fin k → Fin n := fun _ => b1
2024-11-21 16:07:44 +00:00
@[simp]
2024-11-22 10:06:08 +00:00
lemma boundFst_contr_castSucc {n k : } {c : Fin n → 𝓔}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
(hb2i : ∀ r, b2 r ≠ i)
(hb2j : ∀ r, b2 r ≠ j)
(w : WickContract c b1 b2) (r : Fin k) :
(contr i j h hilej hb1 hb2i hb2j w).boundFst r.castSucc = w.boundFst r := by
2024-11-21 16:07:44 +00:00
simp only [boundFst, Fin.snoc_castSucc]
@[simp]
2024-11-22 10:06:08 +00:00
lemma boundFst_contr_last {n k : } {c : Fin n → 𝓔}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
(hb2i : ∀ r, b2 r ≠ i)
(hb2j : ∀ r, b2 r ≠ j)
(w : WickContract c b1 b2) :
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
2024-11-21 16:07:44 +00:00
simp only [boundFst, Fin.snoc_last]
2024-11-22 10:06:08 +00:00
lemma boundFst_strictMono {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
(w : WickContract c b1 b2) → StrictMono w.boundFst := fun
2024-11-21 16:07:44 +00:00
| string => fun k => Fin.elim0 k
2024-11-22 10:06:08 +00:00
| contr i j _ _ hb1 _ _ w => by
2024-11-21 16:07:44 +00:00
intro r s hrs
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
· obtain ⟨r, hr⟩ := hr
subst hr
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
· obtain ⟨s, hs⟩ := hs
subst hs
simp
apply w.boundFst_strictMono _
simpa using hrs
· subst hs
simp
2024-11-22 10:06:08 +00:00
exact hb1 r
2024-11-21 16:07:44 +00:00
· subst hr
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
· obtain ⟨s, hs⟩ := hs
subst hs
have hsp := s.prop
rw [Fin.lt_def] at hrs
simp at hrs
omega
· subst hs
simp at hrs
2024-11-22 10:06:08 +00:00
def boundSnd {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
WickContract c b1 b2 → Fin k → Fin n := fun _ => b2
2024-11-21 16:07:44 +00:00
@[simp]
2024-11-22 10:06:08 +00:00
lemma boundSnd_contr_castSucc {n k : } {c : Fin n → 𝓔}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
(hb2i : ∀ r, b2 r ≠ i)
(hb2j : ∀ r, b2 r ≠ j)
(w : WickContract c b1 b2) (r : Fin k) :
(contr i j h hilej hb1 hb2i hb2j w).boundSnd r.castSucc = w.boundSnd r := by
simp only [boundSnd, Fin.snoc_castSucc]
2024-11-21 16:07:44 +00:00
2024-11-22 10:06:08 +00:00
@[simp]
lemma boundSnd_contr_last {n k : } {c : Fin n → 𝓔}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
(hb2i : ∀ r, b2 r ≠ i)
(hb2j : ∀ r, b2 r ≠ j)
(w : WickContract c b1 b2) :
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
simp only [boundSnd, Fin.snoc_last]
lemma boundSnd_injective {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
(w : WickContract c b1 b2) → Function.Injective w.boundSnd := fun
2024-11-21 16:07:44 +00:00
| string => by
intro i j _
exact Fin.elim0 i
2024-11-22 10:06:08 +00:00
| contr i j hij hilej hi h2i h2j w => by
2024-11-21 16:07:44 +00:00
intro r s hrs
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
· obtain ⟨r, hr⟩ := hr
subst hr
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
· obtain ⟨s, hs⟩ := hs
subst hs
simp at hrs
simpa using w.boundSnd_injective hrs
· subst hs
simp at hrs
2024-11-22 10:06:08 +00:00
exact False.elim (h2j r hrs)
2024-11-21 16:07:44 +00:00
· subst hr
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
· obtain ⟨s, hs⟩ := hs
subst hs
simp at hrs
2024-11-22 10:06:08 +00:00
exact False.elim (h2j s hrs.symm)
2024-11-21 16:07:44 +00:00
· subst hs
rfl
2024-11-22 10:06:08 +00:00
lemma color_boundSnd_eq_dual_boundFst {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
(w : WickContract c b1 b2) → (i : Fin k) → c (w.boundSnd i) = ξ (c (w.boundFst i)) := fun
| string => fun i => Fin.elim0 i
| contr i j hij hilej hi _ _ w => fun r => by
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
· obtain ⟨r, hr⟩ := hr
subst hr
simpa using w.color_boundSnd_eq_dual_boundFst r
· subst hr
simpa using hij
lemma boundFst_lt_boundSnd {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
(w : WickContract c b1 b2) → (i : Fin k) → w.boundFst i < w.boundSnd i := fun
| string => fun i => Fin.elim0 i
| contr i j hij hilej hi _ _ w => fun r => by
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
· obtain ⟨r, hr⟩ := hr
subst hr
simpa using w.boundFst_lt_boundSnd r
· subst hr
simp
exact hilej
lemma boundFst_neq_boundSnd {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
(w : WickContract c b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
| string => fun i => Fin.elim0 i
| contr i j _ hilej h1 h2i h2j w => fun r s => by
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
<;> rcases Fin.eq_castSucc_or_eq_last s with hs | hs
· obtain ⟨r, hr⟩ := hr
obtain ⟨s, hs⟩ := hs
subst hr hs
simpa using w.boundFst_neq_boundSnd r s
· obtain ⟨r, hr⟩ := hr
subst hr hs
simp
have hn := h1 r
omega
· obtain ⟨s, hs⟩ := hs
subst hr hs
simp
exact (h2i s).symm
· subst hr hs
simp
omega
def castMaps {n k k' : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
(hk : k = k')
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract c b1 b2) :
WickContract c b1' b2' :=
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
@[simp]
lemma castMaps_rfl {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} (w : WickContract c b1 b2) :
castMaps rfl rfl rfl w = w := rfl
lemma mem_snoc' {n k : } {c : Fin n → 𝓔} {b1' b2' : Fin k → Fin n} :
(w : WickContract c b1' b2') →
{k' : } → (hk' : k'.succ = k ) →
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = ξ (c i)) →
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
∃ (w' : WickContract c b1 b2), w = castMaps hk' hb1' hb2' (contr i j h hilej hb1 hb2i hb2j w')
:= fun
| string => fun hk' => by
simp at hk'
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
intro hk b1 b2 i j h hilej hb1 hb2i hb2j hb1' hb2'
rename_i k' k b1' b2' f
have hk2 : k' = k := Nat.succ_inj'.mp hk
subst hk2
simp_all
have hb2'' : b2 = b2' := by
funext k
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.castSucc k)
· simp
· rw [hb2']
simp
have hb1'' : b1 = b1' := by
funext k
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.castSucc k)
· simp
· rw [hb1']
simp
have hi : i = i' := by
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.last k')
· simp
· rw [hb1']
simp
have hj : j = j' := by
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.last k')
· simp
· rw [hb2']
simp
subst hb1'' hb2'' hi hj
simp
lemma mem_snoc {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
(hb2i : ∀ r, b2 r ≠ i)
(hb2j : ∀ r, b2 r ≠ j)
(w : WickContract c (Fin.snoc b1 i) (Fin.snoc b2 j)) :
∃ (w' : WickContract c b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
lemma is_subsingleton {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
Subsingleton (WickContract c b1 b2) := Subsingleton.intro fun w1 w2 => by
induction k with
| zero =>
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
subst hb1 hb2
match w1, w2 with
| string, string => rfl
| succ k hI =>
match w1, w2 with
| contr i j h hilej hb1 hb2i hb2j w, w2 =>
let ⟨w', hw'⟩ := mem_snoc i j h hilej hb1 hb2i hb2j w2
rw [hw']
apply congrArg (contr i j _ _ _ _ _) (hI w w')
lemma eq_snoc_castSucc {k n : } (b1 : Fin k.succ → Fin n) :
b1 = Fin.snoc (b1 ∘ Fin.castSucc) (b1 (Fin.last k)) := by
funext i
rcases Fin.eq_castSucc_or_eq_last i with h1 | h1
· obtain ⟨i, rfl⟩ := h1
simp
· subst h1
simp
def fromMaps {n k : } (c : Fin n → 𝓔) (b1 b2 : Fin k → Fin n)
(hi : ∀ i, c (b2 i) = ξ (c (b1 i)))
(hb1ltb2 : ∀ i, b1 i < b2 i)
(hb1 : StrictMono b1)
(hb1neb2 : ∀ r1 r2, b1 r1 ≠ b2 r2)
(hb2 : Function.Injective b2) :
WickContract c b1 b2 := by
match k with
| 0 =>
refine castMaps ?_ ?_ ?_ string
· rfl
· exact funext (fun i => Fin.elim0 i)
· exact funext (fun i => Fin.elim0 i)
| Nat.succ k =>
refine castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
(contr (b1 (Fin.last k)) (b2 (Fin.last k)) (hi (Fin.last k)) (hb1ltb2 (Fin.last k)) (fun r => hb1 (Fin.castSucc_lt_last r)) ?_ ?_
(fromMaps c (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) (fun i => hi (Fin.castSucc i))
(fun i => hb1ltb2 (Fin.castSucc i)) (StrictMono.comp hb1 Fin.strictMono_castSucc)
?_ ?_
))
· exact fun r a => hb1neb2 (Fin.last k) r.castSucc a.symm
· exact fun r => hb2.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r ))
· exact fun r1 r2 => hb1neb2 r1.castSucc r2.castSucc
· exact Function.Injective.comp hb2 (Fin.castSucc_injective k)
lemma eq_from_maps {n k : } {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n}
(w : WickContract c b1 b2) :
w = fromMaps c w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd w.boundSnd_injective := by
exact is_subsingleton.allEq w _
structure struc {n : } (c : Fin n → 𝓔) where
k :
b1 : Fin k ↪o Fin n
b2 : Fin k ↪ Fin n
b2_color_eq_dual_b1 : ∀ i, c (b2 i) = ξ (c (b1 i))
b1_lt_b2 : ∀ i, b1 i < b2 i
b1_neq_b2 : ∀ r1 r2, b1 r1 ≠ b2 r2
def strucEquivSigma {n : } (c : Fin n → 𝓔) :
struc c ≃ Σ (k : ) (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract c b1 b2 where
toFun s := ⟨s.k, s.b1, s.b2, fromMaps c s.b1 s.b2 s.b2_color_eq_dual_b1
s.b1_lt_b2 s.b1.strictMono s.b1_neq_b2 s.b2.inj'⟩
invFun x :=
match x with
| ⟨k, b1, b2, w⟩ => ⟨k, OrderEmbedding.ofStrictMono b1 w.boundFst_strictMono,
⟨b2, w.boundSnd_injective⟩,
w.color_boundSnd_eq_dual_boundFst, w.boundFst_lt_boundSnd, w.boundFst_neq_boundSnd⟩
left_inv s := rfl
right_inv w := by
match w with
| ⟨k, b1, b2, w⟩ =>
simp only [OrderEmbedding.coe_ofStrictMono, Function.Embedding.coeFn_mk, Sigma.mk.inj_iff,
heq_eq_eq, true_and]
exact (eq_from_maps w).symm
2024-11-21 16:07:44 +00:00
end WickContract
2024-11-19 16:56:23 +00:00
end TwoComplexScalar