2024-11-08 06:54:55 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import Mathlib.Data.Complex.Exponential
|
|
|
|
|
import Mathlib.Analysis.InnerProductSpace.PiL2
|
|
|
|
|
import HepLean.SpaceTime.SL2C.Basic
|
|
|
|
|
import HepLean.SpaceTime.LorentzVector.Complex.Modules
|
|
|
|
|
import HepLean.Meta.Informal
|
|
|
|
|
import Mathlib.RepresentationTheory.Rep
|
|
|
|
|
import HepLean.SpaceTime.LorentzVector.Real.Modules
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Real Lorentz vectors
|
|
|
|
|
|
|
|
|
|
We define real Lorentz vectors in as representations of the Lorentz group.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
|
|
|
|
|
open Matrix
|
|
|
|
|
open MatrixGroups
|
|
|
|
|
open Complex
|
|
|
|
|
open TensorProduct
|
|
|
|
|
open SpaceTime
|
|
|
|
|
|
|
|
|
|
namespace Lorentz
|
2024-11-08 09:55:41 +00:00
|
|
|
|
open minkowskiMetric
|
|
|
|
|
open minkowskiMatrix
|
2024-11-08 06:54:55 +00:00
|
|
|
|
/-- The representation of `LorentzGroup d` on real vectors corresponding to contravariant
|
|
|
|
|
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
|
2024-11-08 07:11:57 +00:00
|
|
|
|
def Contr (d : ℕ) : Rep ℝ (LorentzGroup d) := Rep.of ContrMod.rep
|
2024-11-08 06:54:55 +00:00
|
|
|
|
|
|
|
|
|
/-- The representation of `LorentzGroup d` on real vectors corresponding to covariant
|
|
|
|
|
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
|
2024-11-08 07:11:57 +00:00
|
|
|
|
def Co (d : ℕ) : Rep ℝ (LorentzGroup d) := Rep.of CoMod.rep
|
2024-11-08 06:54:55 +00:00
|
|
|
|
|
2024-11-08 09:55:41 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Isomorphism between contravariant and covariant Lorentz vectors
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-- The morphism of representations from `Contr d` to `Co d` defined by multiplication
|
|
|
|
|
with the metric. -/
|
|
|
|
|
def Contr.toCo (d : ℕ) : Contr d ⟶ Co d where
|
|
|
|
|
hom := {
|
|
|
|
|
toFun := fun ψ => CoMod.toFin1dℝEquiv.symm (η *ᵥ ψ.toFin1dℝ),
|
|
|
|
|
map_add' := by
|
|
|
|
|
intro ψ ψ'
|
|
|
|
|
simp only [map_add, mulVec_add]
|
|
|
|
|
map_smul' := by
|
|
|
|
|
intro r ψ
|
|
|
|
|
simp only [_root_.map_smul, mulVec_smul, RingHom.id_apply]}
|
|
|
|
|
comm g := by
|
|
|
|
|
ext ψ : 2
|
|
|
|
|
simp only [ModuleCat.coe_comp, Function.comp_apply]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
change CoMod.toFin1dℝEquiv.symm (η *ᵥ (g.1 *ᵥ ψ.toFin1dℝ))
|
|
|
|
|
rw [mulVec_mulVec, LorentzGroup.minkowskiMatrix_comm, ← mulVec_mulVec]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
/-- The morphism of representations from `Co d` to `Contr d` defined by multiplication
|
|
|
|
|
with the metric. -/
|
|
|
|
|
def Co.toContr (d : ℕ) : Co d ⟶ Contr d where
|
|
|
|
|
hom := {
|
|
|
|
|
toFun := fun ψ => ContrMod.toFin1dℝEquiv.symm (η *ᵥ ψ.toFin1dℝ),
|
|
|
|
|
map_add' := by
|
|
|
|
|
intro ψ ψ'
|
|
|
|
|
simp only [map_add, mulVec_add]
|
|
|
|
|
map_smul' := by
|
|
|
|
|
intro r ψ
|
|
|
|
|
simp only [_root_.map_smul, mulVec_smul, RingHom.id_apply]}
|
|
|
|
|
comm g := by
|
|
|
|
|
ext ψ : 2
|
|
|
|
|
simp only [ModuleCat.coe_comp, Function.comp_apply]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
change ContrMod.toFin1dℝEquiv.symm (η *ᵥ ((LorentzGroup.transpose g⁻¹).1 *ᵥ ψ.toFin1dℝ))
|
|
|
|
|
rw [mulVec_mulVec, ← LorentzGroup.comm_minkowskiMatrix, ← mulVec_mulVec]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
/-- The isomorphism between `Contr d` and `Co d` induced by multiplication with the
|
|
|
|
|
Minkowski metric. -/
|
|
|
|
|
def contrIsoCo (d : ℕ) : Contr d ≅ Co d where
|
|
|
|
|
hom := Contr.toCo d
|
|
|
|
|
inv := Co.toContr d
|
|
|
|
|
hom_inv_id := by
|
|
|
|
|
ext ψ
|
|
|
|
|
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Action.id_hom,
|
|
|
|
|
ModuleCat.id_apply]
|
|
|
|
|
conv_lhs => change ContrMod.toFin1dℝEquiv.symm (η *ᵥ
|
|
|
|
|
CoMod.toFin1dℝEquiv (CoMod.toFin1dℝEquiv.symm (η *ᵥ ψ.toFin1dℝ)))
|
|
|
|
|
rw [LinearEquiv.apply_symm_apply, mulVec_mulVec, minkowskiMatrix.sq]
|
|
|
|
|
simp
|
|
|
|
|
inv_hom_id := by
|
|
|
|
|
ext ψ
|
|
|
|
|
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Action.id_hom,
|
|
|
|
|
ModuleCat.id_apply]
|
|
|
|
|
conv_lhs => change CoMod.toFin1dℝEquiv.symm (η *ᵥ
|
|
|
|
|
ContrMod.toFin1dℝEquiv (ContrMod.toFin1dℝEquiv.symm (η *ᵥ ψ.toFin1dℝ)))
|
|
|
|
|
rw [LinearEquiv.apply_symm_apply, mulVec_mulVec, minkowskiMatrix.sq]
|
|
|
|
|
simp
|
|
|
|
|
|
2024-11-08 06:54:55 +00:00
|
|
|
|
end Lorentz
|
|
|
|
|
end
|