PhysLean/HepLean/Lorentz/SL2C/SelfAdjoint.lean

142 lines
7.1 KiB
Text
Raw Normal View History

2025-01-10 21:33:56 +08:00
import Mathlib.LinearAlgebra.Matrix.SchurComplement
import HepLean.Mathematics.SchurTriangulation
namespace Lorentz
open scoped Matrix
open scoped ComplexConjugate
2025-01-11 20:09:29 +08:00
/-- A notation for the type of complex 2-by-2 matrices. It would have been better to make it an
abbreviation if it wasn't for Lean's inability to recognize `ℂ²ˣ²` as an identifier. -/
scoped notation "ℂ²ˣ²" => Matrix (Fin 2) (Fin 2)
/-- A convenient abbreviation for the type of self-adjoint complex 2-by-2 matrices. -/
2025-01-10 21:33:56 +08:00
noncomputable abbrev ℍ₂ := selfAdjoint ℂ²ˣ²
namespace SL2C
2025-01-11 20:09:29 +08:00
/-- Definitially equal to `Lorentz.SL2C.toSelfAdjointMap` but dropping the requirement that `M` be
special linear. -/
2025-01-10 21:33:56 +08:00
noncomputable def toSelfAdjointMap' (M : ℂ²ˣ²) : ℍ₂ →ₗ[] ℍ₂ where
toFun | ⟨A, hA⟩ => ⟨M * A * Mᴴ, hA.conjugate M⟩
map_add' | ⟨A, _⟩, ⟨B, _⟩ => Subtype.ext <|
show M * (A + B) * Mᴴ = M * A * Mᴴ + M * B * Mᴴ by noncomm_ring
map_smul' | r, ⟨A, _⟩ => Subtype.ext <| by simp
open Complex (I normSq) in
2025-01-11 17:11:38 +00:00
lemma toSelfAdjointMap_det_one' {M : ℂ²ˣ²} (hM : M.IsUpperTriangular) (detM : M.det = 1) :
LinearMap.det (toSelfAdjointMap' M) = 1 :=
2025-01-10 21:33:56 +08:00
let b : Basis (Fin 2 ⊕ Fin 2) ℍ₂ := Basis.ofEquivFun {
toFun := fun ⟨A, _⟩ => ![(A 0 0).re, (A 1 1).re] ⊕ᵥ ![(A 0 1).re, (A 0 1).im]
map_add' := fun _ _ => funext fun | .inl 0 | .inl 1 | .inr 0 | .inr 1 => rfl
map_smul' := fun _ _ => funext fun | .inl 0 | .inl 1 | .inr 0 | .inr 1 => by simp
invFun := fun p => {
2025-01-11 17:11:38 +00:00
val :=
let z : := ⟨p (.inr 0), p (.inr 1)⟩
!![p (.inl 0), z; conj z, p (.inl 1)]
2025-01-10 21:33:56 +08:00
property := Matrix.ext fun | 0, 0 | 0, 1 | 1, 0 | 1, 1 => by simp
}
left_inv := fun ⟨A, hA⟩ => Subtype.ext <| Matrix.ext fun
| 0, 1 => rfl
| 1, 0 => show conj (A 0 1) = A 1 0 from congrFun₂ hA 1 0
| 0, 0 => show (A 0 0).re = A 0 0 from Complex.conj_eq_iff_re.mp (congrFun₂ hA 0 0)
| 1, 1 => show (A 1 1).re = A 1 1 from Complex.conj_eq_iff_re.mp (congrFun₂ hA 1 1)
right_inv := fun _ => funext fun | .inl 0 | .inl 1 | .inr 0 | .inr 1 => rfl
}
let E₀ : ℂ²ˣ² := !![1, 0; conj 0, 0] -- b (.inl 0)
let E₁ : ℂ²ˣ² := !![0, 0; conj 0, 1] -- b (.inl 1)
let E₂ : ℂ²ˣ² := !![0, 1; conj 1, 0] -- b (.inr 0)
let E₃ : ℂ²ˣ² := !![0, I; conj I, 0] -- b (.inr 1)
let F : Matrix (Fin 2 ⊕ Fin 2) (Fin 2 ⊕ Fin 2) := LinearMap.toMatrix b b (toSelfAdjointMap' M)
2025-01-11 17:11:38 +00:00
let A := F.toBlocks₁₁; let B := F.toBlocks₁₂; let C := F.toBlocks₂₁; let D := F.toBlocks₂₂
let x := M 0 0; let y := M 1 1; have hM10 : M 1 0 = 0 := hM <| show 0 < 1 by decide
2025-01-10 21:33:56 +08:00
have he : M = !![x, _; 0, y] := Matrix.ext fun | 0, 0 | 0, 1 | 1, 1 => rfl | 1, 0 => hM10
have he' : Mᴴ = !![conj x, 0; _, conj y] :=
Matrix.ext fun | 0, 0 | 1, 0 | 1, 1 => rfl | 0, 1 => by simp [hM10]
have detA_one : normSq x * normSq y = 1 := congrArg Complex.re <|
2025-01-11 20:09:29 +08:00
calc ↑(normSq x * normSq y)
2025-01-10 21:33:56 +08:00
_ = x * conj x * (y * conj y) := by simp [Complex.mul_conj]
_ = x * y * (conj y * conj x) := by ring
_ = x * y * conj (x * y) := congrArg _ (star_mul ..).symm
_ = 1 := suffices x * y = 1 by simp [this]
2025-01-11 20:09:29 +08:00
calc x * y
2025-01-10 21:33:56 +08:00
_ = !![x, _; 0, y].det := by simp
_ = M.det := congrArg _ he.symm
_ = 1 := detM
have detD_one : D.det = 1 :=
let z := x * conj y
2025-01-11 17:11:38 +00:00
have k₀ : (M * E₂ * Mᴴ) 0 1 = z := by rw [he', he]; simp [E₂]
2025-01-10 21:33:56 +08:00
have k₁ : (M * E₃ * Mᴴ) 0 1 = ⟨-z.im, z.re⟩ :=
calc
2025-01-11 17:11:38 +00:00
_ = x * I * conj y := by rw [he', he]; simp [E₃]
2025-01-10 21:33:56 +08:00
_ = Complex.I * z := by ring
_ = ⟨-z.im, z.re⟩ := z.I_mul
have hD : D = !![z.re, -z.im; z.im, z.re] := Matrix.ext fun
| 0, 0 => congrArg Complex.re k₀ | 1, 0 => congrArg Complex.im k₀
| 0, 1 => congrArg Complex.re k₁ | 1, 1 => congrArg Complex.im k₁
2025-01-11 20:09:29 +08:00
calc D.det
2025-01-10 21:33:56 +08:00
_ = normSq z := by simp [hD, z.normSq_apply]
_ = normSq x * normSq y := by simp [x.normSq_mul]
_ = 1 := detA_one
letI : Invertible D.det := detD_one ▸ invertibleOne
letI : Invertible D := D.invertibleOfDetInvertible
have hE : A - B * ⅟D * C = !![normSq x, _; 0, normSq y] :=
2025-01-11 17:11:38 +00:00
have k : (M * E₀ * Mᴴ) 0 1 = 0 := by rw [he', he]; simp [E₀]
2025-01-10 21:33:56 +08:00
have hC00 : C 0 0 = 0 := congrArg Complex.re k
have hC10 : C 1 0 = 0 := congrArg Complex.im k
Matrix.ext fun
| 0, 1 => rfl
| 1, 0 =>
have hA10 : A 1 0 = 0 := congrArg Complex.re <|
2025-01-11 17:11:38 +00:00
show (M * E₀ * Mᴴ) 1 1 = 0 by rw [he', he]; simp [E₀]
2025-01-10 21:33:56 +08:00
show A 1 0 - (B * ⅟D) 1 ⬝ᵥ (C · 0) = 0 by simp [hC00, hC10, hA10]
| 0, 0 =>
have hA00 : A 0 0 = normSq x := congrArg Complex.re <|
2025-01-11 17:11:38 +00:00
show (M * E₀ * Mᴴ) 0 0 = normSq x by rw [he', he]; simp [E₀, x.mul_conj]
2025-01-10 21:33:56 +08:00
show A 0 0 - (B * ⅟D) 0 ⬝ᵥ (C · 0) = normSq x by simp [hC00, hC10, hA00]
| 1, 1 =>
have hA11 : A 1 1 = normSq y := congrArg Complex.re <|
2025-01-11 17:11:38 +00:00
show (M * E₁ * Mᴴ) 1 1 = normSq y by rw [he', he]; simp [E₁, y.mul_conj]
2025-01-10 21:33:56 +08:00
have hB10 : B 1 0 = 0 := congrArg Complex.re <|
2025-01-11 17:11:38 +00:00
show (M * E₂ * Mᴴ) 1 1 = 0 by rw [he', he]; simp [E₂]
2025-01-10 21:33:56 +08:00
have hB11 : B 1 1 = 0 := congrArg Complex.re <|
2025-01-11 17:11:38 +00:00
show (M * E₃ * Mᴴ) 1 1 = 0 by rw [he', he]; simp [E₃]
2025-01-11 20:09:29 +08:00
calc A 1 1 - (B * ⅟D * C) 1 1
2025-01-10 21:33:56 +08:00
_ = A 1 1 - B 1 ⬝ᵥ ((⅟D * C) · 1) := by noncomm_ring
_ = normSq y := by simp [hB10, hB11, hA11]
2025-01-11 20:09:29 +08:00
calc LinearMap.det (toSelfAdjointMap' M)
2025-01-10 21:33:56 +08:00
_ = F.det := (LinearMap.det_toMatrix ..).symm
_ = D.det * (A - B * ⅟D * C).det := F.fromBlocks_toBlocks ▸ Matrix.det_fromBlocks₂₂ ..
2025-01-11 17:11:38 +00:00
_ = 1 := by rw [hE]; simp [detD_one, detA_one]
2025-01-10 21:33:56 +08:00
2025-01-11 20:09:29 +08:00
/-- This promotes `Lorentz.SL2C.toSelfAdjointMap M` and its definitional equivalence,
`Lorentz.SL2C.toSelfAdjointMap' M`, to a linear equivalence by recognising the linear inverse to be
`Lorentz.SL2C.toSelfAdjointMap M⁻¹`, i.e., `Lorentz.SL2C.toSelfAdjointMap' M⁻¹`. -/
2025-01-10 21:33:56 +08:00
noncomputable def toSelfAdjointEquiv (M : ℂ²ˣ²) [Invertible M] : ℍ₂ ≃ₗ[] ℍ₂ where
toLinearMap := toSelfAdjointMap' M
invFun := toSelfAdjointMap' M⁻¹
left_inv | ⟨A, _⟩ => Subtype.ext <|
2025-01-11 20:09:29 +08:00
calc M⁻¹ * (M * A * Mᴴ) * M⁻¹ᴴ
2025-01-10 21:33:56 +08:00
_ = M⁻¹ * ↑M * A * (M⁻¹ * M)ᴴ := by noncomm_ring [Matrix.conjTranspose_mul]
_ = A := by simp
right_inv | ⟨A, _⟩ => Subtype.ext <|
2025-01-11 20:09:29 +08:00
calc M * (M⁻¹ * A * M⁻¹ᴴ) * Mᴴ
2025-01-10 21:33:56 +08:00
_ = M * M⁻¹ * A * (M * M⁻¹)ᴴ := by noncomm_ring [Matrix.conjTranspose_mul]
_ = A := by simp
2025-01-11 17:11:38 +00:00
lemma toSelfAdjointMap_mul (M N : ℂ²ˣ²) :
toSelfAdjointMap' (M * N) = toSelfAdjointMap' M ∘ₗ toSelfAdjointMap' N :=
2025-01-10 21:33:56 +08:00
LinearMap.ext fun A => Subtype.ext <|
show M * N * A * (M * N)ᴴ = M * (N * A * Nᴴ) * Mᴴ by noncomm_ring [Matrix.conjTranspose_mul]
2025-01-11 17:11:38 +00:00
lemma toSelfAdjointMap_similar_det (M N : ℂ²ˣ²) [Invertible M] :
LinearMap.det (toSelfAdjointMap' (M * N * M⁻¹)) = LinearMap.det (toSelfAdjointMap' N) :=
2025-01-10 21:33:56 +08:00
let e := toSelfAdjointEquiv M
let f := toSelfAdjointMap' N
suffices toSelfAdjointMap' (M * N * M⁻¹) = e ∘ₗ f ∘ₗ e.symm from this ▸ f.det_conj e
2025-01-11 17:11:38 +00:00
by rw [toSelfAdjointMap_mul, toSelfAdjointMap_mul]; rfl
2025-01-10 21:33:56 +08:00
end SL2C
end Lorentz