PhysLean/HepLean/SpaceTime/LorentzVector/Complex/Two.lean

283 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Complex.Basic
import Mathlib.LinearAlgebra.TensorProduct.Matrix
/-!
# Tensor products of two complex Lorentz vectors
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz
/-- Equivalence of `complexContr ⊗ complexContr` to `4 x 4` complex matrices. -/
def contrContrToMatrix : (complexContr ⊗ complexContr).V ≃ₗ[]
Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) :=
(Basis.tensorProduct complexContrBasis complexContrBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)) ≪≫ₗ
LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)
/-- Equivalence of `complexCo ⊗ complexCo` to `4 x 4` complex matrices. -/
def coCoToMatrix : (complexCo ⊗ complexCo).V ≃ₗ[]
Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) :=
(Basis.tensorProduct complexCoBasis complexCoBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)) ≪≫ₗ
LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)
/-- Expanding `coCoToMatrix` in terms of the standard basis. -/
lemma coCoToMatrix_symm_expand_tmul (M : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) :
coCoToMatrix.symm M = ∑ i, ∑ j, M i j • (complexCoBasis i ⊗ₜ[] complexCoBasis j) := by
simp only [Action.instMonoidalCategory_tensorObj_V, coCoToMatrix, LinearEquiv.trans_symm,
LinearEquiv.trans_apply, Basis.repr_symm_apply]
rw [Finsupp.linearCombination_apply_of_mem_supported (s := Finset.univ)]
· erw [Finset.sum_product]
refine Finset.sum_congr rfl (fun i _ => Finset.sum_congr rfl (fun j _ => ?_))
erw [Basis.tensorProduct_apply complexCoBasis complexCoBasis i j]
rfl
· simp
/-- Equivalence of `complexContr ⊗ complexCo` to `4 x 4` complex matrices. -/
def contrCoToMatrix : (complexContr ⊗ complexCo).V ≃ₗ[]
Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) :=
(Basis.tensorProduct complexContrBasis complexCoBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)) ≪≫ₗ
LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)
/-- Equivalence of `complexCo ⊗ complexContr` to `4 x 4` complex matrices. -/
def coContrToMatrix : (complexCo ⊗ complexContr).V ≃ₗ[]
Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) :=
(Basis.tensorProduct complexCoBasis complexContrBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)) ≪≫ₗ
LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)
/-!
## Group actions
-/
lemma contrContrToMatrix_ρ (v : (complexContr ⊗ complexContr).V) (M : SL(2,)) :
contrContrToMatrix (TensorProduct.map (complexContr.ρ M) (complexContr.ρ M) v) =
(LorentzGroup.toComplex (SL2C.toLorentzGroup M)) * contrContrToMatrix v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))ᵀ := by
nth_rewrite 1 [contrContrToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)) ((LinearMap.toMatrix
(complexContrBasis.tensorProduct complexContrBasis)
(complexContrBasis.tensorProduct complexContrBasis)
(TensorProduct.map (complexContr.ρ M) (complexContr.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)))
((complexContrBasis.tensorProduct complexContrBasis).repr v)))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (complexContrBasis.tensorProduct complexContrBasis)
(complexContrBasis.tensorProduct complexContrBasis)
(TensorProduct.map (complexContr.ρ M) (complexContr.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M))
((LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M)) (i, j) k)
* contrContrToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 13:36:48 +00:00
have h1 : ∑ x, (∑ x1, LorentzGroup.toComplex (SL2C.toLorentzGroup M) i x1 *
contrContrToMatrix v x1 x) * LorentzGroup.toComplex (SL2C.toLorentzGroup M) j x
2024-10-15 13:36:48 +00:00
= ∑ x, ∑ x1, (LorentzGroup.toComplex (SL2C.toLorentzGroup M) i x1
* contrContrToMatrix v x1 x) * LorentzGroup.toComplex (SL2C.toLorentzGroup M) j x := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [complexContrBasis_ρ_apply, transpose_apply, Action.instMonoidalCategory_tensorObj_V]
ring
lemma coCoToMatrix_ρ (v : (complexCo ⊗ complexCo).V) (M : SL(2,)) :
coCoToMatrix (TensorProduct.map (complexCo.ρ M) (complexCo.ρ M) v) =
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ * coCoToMatrix v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ := by
nth_rewrite 1 [coCoToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)) ((LinearMap.toMatrix
(complexCoBasis.tensorProduct complexCoBasis)
(complexCoBasis.tensorProduct complexCoBasis)
(TensorProduct.map (complexCo.ρ M) (complexCo.ρ M))
*ᵥ ((Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)))
((complexCoBasis.tensorProduct complexCoBasis).repr v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (complexCoBasis.tensorProduct complexCoBasis)
(complexCoBasis.tensorProduct complexCoBasis)
(TensorProduct.map (complexCo.ρ M) (complexCo.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M))
((LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M)) (i, j) k)
* coCoToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 13:36:48 +00:00
have h1 : ∑ x, (∑ x1, (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x1 i *
coCoToMatrix v x1 x) * (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x j
2024-10-15 13:36:48 +00:00
= ∑ x, ∑ x1, ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x1 i
* coCoToMatrix v x1 x) * (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x j := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [complexCoBasis_ρ_apply, transpose_apply, Action.instMonoidalCategory_tensorObj_V]
ring
lemma contrCoToMatrix_ρ (v : (complexContr ⊗ complexCo).V) (M : SL(2,)) :
contrCoToMatrix (TensorProduct.map (complexContr.ρ M) (complexCo.ρ M) v) =
(LorentzGroup.toComplex (SL2C.toLorentzGroup M)) * contrCoToMatrix v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ := by
nth_rewrite 1 [contrCoToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)) ((LinearMap.toMatrix
(complexContrBasis.tensorProduct complexCoBasis)
(complexContrBasis.tensorProduct complexCoBasis)
(TensorProduct.map (complexContr.ρ M) (complexCo.ρ M))
*ᵥ ((Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)))
((complexContrBasis.tensorProduct complexCoBasis).repr v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (complexContrBasis.tensorProduct complexCoBasis)
(complexContrBasis.tensorProduct complexCoBasis)
(TensorProduct.map (complexContr.ρ M) (complexCo.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M))
((LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M)) (i, j) k)
* contrCoToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply]
2024-10-15 13:36:48 +00:00
have h1 : ∑ x, (∑ x1, LorentzGroup.toComplex (SL2C.toLorentzGroup M) i x1 *
contrCoToMatrix v x1 x) * (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x j
2024-10-15 13:36:48 +00:00
= ∑ x, ∑ x1, (LorentzGroup.toComplex (SL2C.toLorentzGroup M) i x1
* contrCoToMatrix v x1 x) * (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x j := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [complexContrBasis_ρ_apply, complexCoBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
lemma coContrToMatrix_ρ (v : (complexCo ⊗ complexContr).V) (M : SL(2,)) :
coContrToMatrix (TensorProduct.map (complexCo.ρ M) (complexContr.ρ M) v) =
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ * coContrToMatrix v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))ᵀ := by
nth_rewrite 1 [coContrToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3)) ((LinearMap.toMatrix
(complexCoBasis.tensorProduct complexContrBasis)
(complexCoBasis.tensorProduct complexContrBasis)
(TensorProduct.map (complexCo.ρ M) (complexContr.ρ M))
*ᵥ ((Finsupp.linearEquivFunOnFinite ((Fin 1 ⊕ Fin 3) × (Fin 1 ⊕ Fin 3)))
((complexCoBasis.tensorProduct complexContrBasis).repr v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (complexCoBasis.tensorProduct complexContrBasis)
(complexCoBasis.tensorProduct complexContrBasis)
(TensorProduct.map (complexCo.ρ M) (complexContr.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M))
((LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M)) (i, j) k)
* coContrToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 13:36:48 +00:00
have h1 : ∑ x, (∑ x1, (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x1 i *
coContrToMatrix v x1 x) * (LorentzGroup.toComplex (SL2C.toLorentzGroup M)) j x
2024-10-15 13:36:48 +00:00
= ∑ x, ∑ x1, ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ x1 i
* coContrToMatrix v x1 x) * (LorentzGroup.toComplex (SL2C.toLorentzGroup M)) j x := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [complexCoBasis_ρ_apply, complexContrBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
/-!
## The symm version of the group actions.
-/
lemma contrContrToMatrix_ρ_symm (v : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) (M : SL(2,)) :
TensorProduct.map (complexContr.ρ M) (complexContr.ρ M) (contrContrToMatrix.symm v) =
contrContrToMatrix.symm ((LorentzGroup.toComplex (SL2C.toLorentzGroup M)) * v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))ᵀ) := by
have h1 := contrContrToMatrix_ρ (contrContrToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma coCoToMatrix_ρ_symm (v : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) (M : SL(2,)) :
TensorProduct.map (complexCo.ρ M) (complexCo.ρ M) (coCoToMatrix.symm v) =
coCoToMatrix.symm ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ * v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹) := by
have h1 := coCoToMatrix_ρ (coCoToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma contrCoToMatrix_ρ_symm (v : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) (M : SL(2,)) :
TensorProduct.map (complexContr.ρ M) (complexCo.ρ M) (contrCoToMatrix.symm v) =
contrCoToMatrix.symm ((LorentzGroup.toComplex (SL2C.toLorentzGroup M)) * v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹) := by
have h1 := contrCoToMatrix_ρ (contrCoToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma coContrToMatrix_ρ_symm (v : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) (M : SL(2,)) :
TensorProduct.map (complexCo.ρ M) (complexContr.ρ M) (coContrToMatrix.symm v) =
coContrToMatrix.symm ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ * v *
(LorentzGroup.toComplex (SL2C.toLorentzGroup M))ᵀ) := by
have h1 := coContrToMatrix_ρ (coContrToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
end Lorentz
end