PhysLean/HepLean/AnomalyCancellation/LinearMaps.lean

254 lines
7.9 KiB
Text
Raw Normal View History

2024-04-16 15:34:00 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Tactic.Polyrith
import Mathlib.Algebra.Module.LinearMap.Basic
/-!
# Linear maps
Some definitions and properites of linear, bilinear, and trilinear maps, along with homogeneous
quadratic and cubic equations.
## TODO
Use definitions in `Mathlib4` for definitions where possible.
-/
/-- The structure defining a homogeneous quadratic equation. -/
structure HomogeneousQuadratic (V : Type) [AddCommMonoid V] [Module V] where
/-- The quadratic equation. -/
toFun : V →
/-- The equation is homogeneous. -/
map_smul' : ∀ a S, toFun (a • S) = a ^ 2 * toFun S
namespace HomogeneousQuadratic
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (HomogeneousQuadratic V) V where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma map_smul (f : HomogeneousQuadratic V) (a : ) (S : V) : f (a • S) = a ^ 2 * f S :=
f.map_smul' a S
end HomogeneousQuadratic
structure BiLinear (V : Type) [AddCommMonoid V] [Module V] where
toFun : V × V →
map_smul₁' : ∀ a S T, toFun (a • S, T) = a * toFun (S, T)
map_smul₂' : ∀ a S T , toFun (S, a • T) = a * toFun (S, T)
map_add₁' : ∀ S1 S2 T, toFun (S1 + S2, T) = toFun (S1, T) + toFun (S2, T)
map_add₂' : ∀ S T1 T2, toFun (S, T1 + T2) = toFun (S, T1) + toFun (S, T2)
namespace BiLinear
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (BiLinear V) (V × V) where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma map_smul₁ (f : BiLinear V) (a : ) (S T : V) : f (a • S, T) = a * f (S, T) :=
f.map_smul₁' a S T
lemma map_smul₂ (f : BiLinear V) (S : V) (a : ) (T : V) : f (S, a • T) = a * f (S, T) :=
f.map_smul₂' a S T
lemma map_add₁ (f : BiLinear V) (S1 S2 T : V) : f (S1 + S2, T) = f (S1, T) + f (S2, T) :=
f.map_add₁' S1 S2 T
lemma map_add₂ (f : BiLinear V) (S : V) (T1 T2 : V) : f (S, T1 + T2) = f (S, T1) + f (S, T2) :=
f.map_add₂' S T1 T2
end BiLinear
structure BiLinearSymm (V : Type) [AddCommMonoid V] [Module V] where
toFun : V × V →
map_smul₁' : ∀ a S T, toFun (a • S, T) = a * toFun (S, T)
map_add₁' : ∀ S1 S2 T, toFun (S1 + S2, T) = toFun (S1, T) + toFun (S2, T)
swap' : ∀ S T, toFun (S, T) = toFun (T, S)
namespace BiLinearSymm
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun (V : Type) [AddCommMonoid V] [Module V] :
FunLike (BiLinearSymm V) (V × V) where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma toFun_eq_coe (f : BiLinearSymm V) : f.toFun = f := rfl
lemma map_smul₁ (f : BiLinearSymm V) (a : ) (S T : V) : f (a • S, T) = a * f (S, T) :=
f.map_smul₁' a S T
lemma swap (f : BiLinearSymm V) (S T : V) : f (S, T) = f (T, S) :=
f.swap' S T
lemma map_smul₂ (f : BiLinearSymm V) (a : ) (S : V) (T : V) : f (S, a • T) = a * f (S, T) := by
rw [f.swap, f.map_smul₁, f.swap]
lemma map_add₁ (f : BiLinearSymm V) (S1 S2 T : V) : f (S1 + S2, T) = f (S1, T) + f (S2, T) :=
f.map_add₁' S1 S2 T
lemma map_add₂ (f : BiLinearSymm V) (S : V) (T1 T2 : V) :
f (S, T1 + T2) = f (S, T1) + f (S, T2) := by
rw [f.swap, f.map_add₁, f.swap T1 S, f.swap T2 S]
@[simps!]
def toHomogeneousQuad {V : Type} [AddCommMonoid V] [Module V]
(τ : BiLinearSymm V) : HomogeneousQuadratic V where
toFun S := τ (S, S)
map_smul' a S := by
simp only
rw [τ.map_smul₁, τ.map_smul₂]
ring
lemma toHomogeneousQuad_add {V : Type} [AddCommMonoid V] [Module V]
(τ : BiLinearSymm V) (S T : V) :
τ.toHomogeneousQuad (S + T) = τ.toHomogeneousQuad S +
τ.toHomogeneousQuad T + 2 * τ (S, T) := by
simp only [toHomogeneousQuad_toFun]
rw [τ.map_add₁, τ.map_add₂, τ.map_add₂, τ.swap T S]
ring
end BiLinearSymm
structure HomogeneousCubic (V : Type) [AddCommMonoid V] [Module V] where
toFun : V →
map_smul' : ∀ a S, toFun (a • S) = a ^ 3 * toFun S
namespace HomogeneousCubic
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (HomogeneousCubic V) V where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma map_smul (f : HomogeneousCubic V) (a : ) (S : V) : f (a • S) = a ^ 3 * f S :=
f.map_smul' a S
end HomogeneousCubic
structure TriLinear (V : Type) [AddCommMonoid V] [Module V] where
toFun : V × V × V →
map_smul₁' : ∀ a S T L, toFun (a • S, T, L) = a * toFun (S, T, L)
map_smul₂' : ∀ a S T L, toFun (S, a • T, L) = a * toFun (S, T, L)
map_smul₃' : ∀ a S T L, toFun (S, T, a • L) = a * toFun (S, T, L)
map_add₁' : ∀ S1 S2 T L, toFun (S1 + S2, T, L) = toFun (S1, T, L) + toFun (S2, T, L)
map_add₂' : ∀ S T1 T2 L, toFun (S, T1 + T2, L) = toFun (S, T1, L) + toFun (S, T2, L)
map_add₃' : ∀ S T L1 L2, toFun (S, T, L1 + L2) = toFun (S, T, L1) + toFun (S, T, L2)
namespace TriLinear
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (TriLinear V) (V × V × V) where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
end TriLinear
structure TriLinearSymm (V : Type) [AddCommMonoid V] [Module V] where
toFun : V × V × V →
map_smul₁' : ∀ a S T L, toFun (a • S, T, L) = a * toFun (S, T, L)
map_add₁' : ∀ S1 S2 T L, toFun (S1 + S2, T, L) = toFun (S1, T, L) + toFun (S2, T, L)
swap₁' : ∀ S T L, toFun (S, T, L) = toFun (T, S, L)
swap₂' : ∀ S T L, toFun (S, T, L) = toFun (S, L, T)
namespace TriLinearSymm
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (TriLinearSymm V) (V × V × V) where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma toFun_eq_coe (f : TriLinearSymm V) : f.toFun = f := rfl
lemma swap₁ (f : TriLinearSymm V) (S T L : V) : f (S, T, L) = f (T, S, L) :=
f.swap₁' S T L
lemma swap₂ (f : TriLinearSymm V) (S T L : V) : f (S, T, L) = f (S, L, T) :=
f.swap₂' S T L
lemma swap₃ (f : TriLinearSymm V) (S T L : V) : f (S, T, L) = f (L, T, S) := by
rw [f.swap₁, f.swap₂, f.swap₁]
lemma map_smul₁ (f : TriLinearSymm V) (a : ) (S T L : V) :
f (a • S, T, L) = a * f (S, T, L) :=
f.map_smul₁' a S T L
lemma map_smul₂ (f : TriLinearSymm V) (S : V) (a : ) (T L : V) :
f (S, a • T, L) = a * f (S, T, L) := by
rw [f.swap₁, f.map_smul₁, f.swap₁]
lemma map_smul₃ (f : TriLinearSymm V) (S T : V) (a : ) (L : V) :
f (S, T, a • L) = a * f (S, T, L) := by
rw [f.swap₃, f.map_smul₁, f.swap₃]
lemma map_add₁ (f : TriLinearSymm V) (S1 S2 T L : V) :
f (S1 + S2, T, L) = f (S1, T, L) + f (S2, T, L) :=
f.map_add₁' S1 S2 T L
lemma map_add₂ (f : TriLinearSymm V) (S T1 T2 L : V) :
f (S, T1 + T2, L) = f (S, T1, L) + f (S, T2, L) := by
rw [f.swap₁, f.map_add₁, f.swap₁ S T1, f.swap₁ S T2]
lemma map_add₃ (f : TriLinearSymm V) (S T L1 L2 : V) :
f (S, T, L1 + L2) = f (S, T, L1) + f (S, T, L2) := by
rw [f.swap₃, f.map_add₁, f.swap₃, f.swap₃ L2 T S]
@[simps!]
def toCubic {charges : Type} [AddCommMonoid charges] [Module charges]
(τ : TriLinearSymm charges) : HomogeneousCubic charges where
toFun S := τ (S, S, S)
map_smul' a S := by
simp only
rw [τ.map_smul₁, τ.map_smul₂, τ.map_smul₃]
ring
lemma toCubic_add {charges : Type} [AddCommMonoid charges] [Module charges]
(τ : TriLinearSymm charges) (S T : charges) :
τ.toCubic (S + T) = τ.toCubic S +
τ.toCubic T + 3 * τ (S, S, T) + 3 * τ (T, T, S) := by
simp only [toCubic_toFun]
rw [τ.map_add₁, τ.map_add₂, τ.map_add₂, τ.map_add₃, τ.map_add₃, τ.map_add₃, τ.map_add₃]
rw [τ.swap₂ S T S, τ.swap₁ T S S, τ.swap₂ S T S, τ.swap₂ T S T, τ.swap₁ S T T, τ.swap₂ T S T]
ring
end TriLinearSymm