PhysLean/HepLean/Lorentz/MinkowskiMatrix.lean

173 lines
6.3 KiB
Text
Raw Normal View History

2024-11-08 11:22:39 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Analysis.InnerProductSpace.PiL2
2024-11-08 11:22:39 +00:00
import Mathlib.Algebra.Lie.Classical
/-!
# The Minkowski matrix
-/
open Matrix
open InnerProductSpace
/-!
# The definition of the Minkowski Matrix
-/
/-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/
def minkowskiMatrix {d : } : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) :=
LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d)
namespace minkowskiMatrix
variable {d : }
/-- Notation for `minkowskiMatrix`. -/
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
2025-02-08 13:07:54 +00:00
/-- The Minkowski matrix is self-inverting. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_mul_diagonal]
ext1 i j
rcases i with i | i <;> rcases j with j | j
· simp only [diagonal, of_apply, Sum.inl.injEq, Sum.elim_inl, mul_one]
split
· rename_i h
subst h
simp_all only [one_apply_eq]
· simp_all only [ne_eq, Sum.inl.injEq, not_false_eq_true, one_apply_ne]
· rfl
· rfl
· simp only [diagonal, of_apply, Sum.inr.injEq, Sum.elim_inr, mul_neg, mul_one, neg_neg]
split
· rename_i h
subst h
simp_all only [one_apply_eq]
· simp_all only [ne_eq, Sum.inr.injEq, not_false_eq_true, one_apply_ne]
2024-11-26 11:58:37 +00:00
/-- The Minkowski matrix is symmetric. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose]
2025-02-08 13:07:54 +00:00
/-- The determinant of the Minkowski matrix is equal to `-1` to the power
of the number of spatial dimensions. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
2024-11-26 11:58:37 +00:00
/-- Multiplying any element on the diagonal of the Minkowski matrix by itself gives `1`. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma η_apply_mul_η_apply_diag (μ : Fin 1 ⊕ Fin d) : η μ μ * η μ μ = 1 := by
match μ with
| Sum.inl _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
| Sum.inr _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
2025-02-08 13:07:54 +00:00
/-- The Minkowski matrix as a block matrix. -/
2024-11-08 11:22:39 +00:00
lemma as_block : @minkowskiMatrix d =
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ) 0 0 (-1 : Matrix (Fin d) (Fin d) ) := by
rw [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, ← fromBlocks_diagonal]
refine fromBlocks_inj.mpr ?_
simp only [diagonal_one, true_and]
funext i j
rw [← diagonal_neg]
rfl
2024-11-26 11:58:37 +00:00
/-- The off diagonal elements of the Minkowski matrix are zero. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma off_diag_zero {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν) : η μ ν = 0 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
exact diagonal_apply_ne _ h
2024-11-26 11:58:37 +00:00
/-- The `time-time` component of the Minkowski matrix is `1`. -/
2024-11-08 11:22:39 +00:00
lemma inl_0_inl_0 : @minkowskiMatrix d (Sum.inl 0) (Sum.inl 0) = 1 := by
rfl
2025-02-07 15:43:59 +00:00
/-- The space diagonal components of the Minkowski matrix are `-1`. -/
2024-11-08 11:22:39 +00:00
lemma inr_i_inr_i (i : Fin d) : @minkowskiMatrix d (Sum.inr i) (Sum.inr i) = -1 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
simp_all only [diagonal_apply_eq, Sum.elim_inr]
2024-11-26 11:58:37 +00:00
/-- The time components of a vector acted on by the Minkowski matrix remains unchanged. -/
2024-11-08 13:20:00 +00:00
@[simp]
lemma mulVec_inl_0 (v : (Fin 1 ⊕ Fin d) → ) :
(η *ᵥ v) (Sum.inl 0)= v (Sum.inl 0) := by
simp only [mulVec, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal]
simp only [Fin.isValue, diagonal_dotProduct, Sum.elim_inl, one_mul]
2024-11-26 11:58:37 +00:00
/-- The space components of a vector acted on by the Minkowski matrix swaps sign. -/
2024-11-08 13:20:00 +00:00
@[simp]
lemma mulVec_inr_i (v : (Fin 1 ⊕ Fin d) → ) (i : Fin d) :
(η *ᵥ v) (Sum.inr i)= - v (Sum.inr i) := by
simp only [mulVec, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal]
simp only [diagonal_dotProduct, Sum.elim_inr, neg_mul, one_mul]
2024-11-08 11:22:39 +00:00
variable (Λ Λ' : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) )
2024-11-26 11:58:37 +00:00
/-- The dual of a matrix with respect to the Minkowski metric.
A suitable name fo this construction is the Minkowski dual. -/
2024-11-08 11:22:39 +00:00
def dual : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) := η * Λᵀ * η
2024-11-26 11:58:37 +00:00
/-- The Minkowski dual of the identity is the identity. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma dual_id : @dual d 1 = 1 := by
simpa only [dual, transpose_one, mul_one] using minkowskiMatrix.sq
2025-02-10 10:59:09 +00:00
/-- The Minkowski dual swaps multiplications (acts contravariantly). -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma dual_mul : dual (Λ * Λ') = dual Λ' * dual Λ := by
simp only [dual, transpose_mul]
trans η * Λ'ᵀ * (η * η) * Λᵀ * η
· noncomm_ring [minkowskiMatrix.sq]
· noncomm_ring
2024-11-26 11:58:37 +00:00
/-- The Minkowski dual is involutive (i.e. `dual (dual Λ)) = Λ`). -/
2024-11-08 11:22:39 +00:00
@[simp]
2024-11-26 11:58:37 +00:00
lemma dual_dual : Function.Involutive (@dual d) := by
intro Λ
2024-11-08 11:22:39 +00:00
simp only [dual, transpose_mul, transpose_transpose, eq_transpose]
trans (η * η) * Λ * (η * η)
· noncomm_ring
· noncomm_ring [minkowskiMatrix.sq]
2024-11-26 11:58:37 +00:00
/-- The Minkowski dual preserves the Minkowski matrix. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma dual_eta : @dual d η = η := by
simp only [dual, eq_transpose]
noncomm_ring [minkowskiMatrix.sq]
2024-11-26 11:58:37 +00:00
/-- The Minkowski dual commutes with the transpose. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma dual_transpose : dual Λᵀ = (dual Λ)ᵀ := by
simp only [dual, transpose_transpose, transpose_mul, eq_transpose]
noncomm_ring
2024-11-26 11:58:37 +00:00
/-- The Minkowski dual preserves determinants. -/
2024-11-08 11:22:39 +00:00
@[simp]
lemma det_dual : (dual Λ).det = Λ.det := by
simp only [dual, det_mul, minkowskiMatrix.det_eq_neg_one_pow_d, det_transpose]
group
norm_cast
simp
2025-02-10 10:21:57 +00:00
/-- Expansion of the components of the Minkowski dual in terms of the components
2024-11-26 11:58:37 +00:00
of the original matrix. -/
2024-11-08 11:22:39 +00:00
lemma dual_apply (μ ν : Fin 1 ⊕ Fin d) :
dual Λ μ ν = η μ μ * Λ ν μ * η ν ν := by
simp only [dual, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
diagonal_mul, transpose_apply, diagonal_apply_eq]
2024-11-26 11:58:37 +00:00
/-- The components of the Minkowski dual of a matrix multiplied by the Minkowski matrix
2025-02-10 10:51:44 +00:00
in terms of the original matrix. -/
2024-11-08 11:22:39 +00:00
lemma dual_apply_minkowskiMatrix (μ ν : Fin 1 ⊕ Fin d) :
dual Λ μ ν * η ν ν = η μ μ * Λ ν μ := by
rw [dual_apply, mul_assoc]
simp
end minkowskiMatrix