2024-10-07 12:20:53 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2024-10-10 08:57:22 +00:00
|
|
|
|
import HepLean.Tensors.OverColor.Iso
|
2024-10-15 06:08:56 +00:00
|
|
|
|
import HepLean.Tensors.OverColor.Discrete
|
|
|
|
|
import HepLean.Tensors.OverColor.Lift
|
2024-10-09 07:42:56 +00:00
|
|
|
|
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
2024-10-17 11:43:33 +00:00
|
|
|
|
import LLMLean
|
2024-10-07 12:20:53 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Tensor trees
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
open IndexNotation
|
|
|
|
|
open CategoryTheory
|
2024-10-09 16:57:41 +00:00
|
|
|
|
open MonoidalCategory
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
|
|
|
|
|
complex Lorentz tensors.
|
|
|
|
|
Note: This structure is not fully defined yet. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
structure TensorStruct where
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The colors of indices e.g. up or down. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
C : Type
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
G : Type
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- An instance of `G` as a group. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
G_group : Group G
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The field over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
k : Type
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- An instance of `k` as a commutative ring. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
k_commRing : CommRing k
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors
|
|
|
|
|
`X → C`. -/
|
2024-10-15 06:08:56 +00:00
|
|
|
|
FDiscrete : Discrete C ⥤ Rep k G
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A map from `C` to `C`. An involution. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
τ : C → C
|
2024-10-15 06:08:56 +00:00
|
|
|
|
τ_involution : Function.Involutive τ
|
|
|
|
|
/-- The natural transformation describing contraction. -/
|
2024-10-16 16:38:36 +00:00
|
|
|
|
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
2024-10-15 06:08:56 +00:00
|
|
|
|
/-- The natural transformation describing the metric. -/
|
2024-10-16 16:38:36 +00:00
|
|
|
|
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
|
2024-10-15 06:08:56 +00:00
|
|
|
|
/-- The natural transformation describing the unit. -/
|
|
|
|
|
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A specification of the dimension of each color in C. This will be used for explicit
|
|
|
|
|
evaluation of tensors. -/
|
|
|
|
|
evalNo : C → ℕ
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
2024-10-15 06:08:56 +00:00
|
|
|
|
noncomputable section
|
|
|
|
|
|
2024-10-07 12:20:53 +00:00
|
|
|
|
namespace TensorStruct
|
|
|
|
|
|
|
|
|
|
variable (S : TensorStruct)
|
|
|
|
|
|
|
|
|
|
instance : CommRing S.k := S.k_commRing
|
|
|
|
|
|
|
|
|
|
instance : Group S.G := S.G_group
|
|
|
|
|
|
2024-10-15 06:08:56 +00:00
|
|
|
|
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
|
|
|
|
def F : MonoidalFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
|
|
|
|
|
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-
|
2024-10-15 06:08:56 +00:00
|
|
|
|
def metric (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
|
|
|
|
|
(OverColor.Discrete.pairIso S.FDiscrete c).hom.hom <|
|
|
|
|
|
(S.metricNat.app (Discrete.mk c)).hom (1 : S.k)
|
2024-10-16 16:38:36 +00:00
|
|
|
|
-/
|
2024-10-15 06:08:56 +00:00
|
|
|
|
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
2024-10-16 16:42:20 +00:00
|
|
|
|
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
2024-10-15 06:08:56 +00:00
|
|
|
|
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
|
|
|
|
|
(Discrete.mk (c i))) ⊗
|
2024-10-15 06:08:56 +00:00
|
|
|
|
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
|
|
|
|
(S.F.mapIso (OverColor.equivToIso (OverColor.finExtractTwo i j))).trans <|
|
|
|
|
|
(S.F.mapIso (OverColor.mkSum (c ∘ (OverColor.finExtractTwo i j).symm))).trans <|
|
|
|
|
|
(S.F.μIso _ _).symm.trans <| by
|
|
|
|
|
refine tensorIso ?_ (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
|
|
|
|
apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(OverColor.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
|
|
|
|
apply (S.F.μIso _ _).symm.trans
|
|
|
|
|
apply tensorIso ?_ ?_
|
|
|
|
|
· symm
|
|
|
|
|
apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans
|
|
|
|
|
apply S.F.mapIso
|
|
|
|
|
apply OverColor.mkIso
|
|
|
|
|
funext x
|
|
|
|
|
fin_cases x
|
|
|
|
|
rfl
|
|
|
|
|
· symm
|
|
|
|
|
apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans
|
|
|
|
|
apply S.F.mapIso
|
|
|
|
|
apply OverColor.mkIso
|
|
|
|
|
funext x
|
|
|
|
|
fin_cases x
|
|
|
|
|
simp [h]
|
|
|
|
|
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/--
|
|
|
|
|
`contrMap` is a function that takes a natural number `n`, a function `c` from
|
|
|
|
|
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
|
|
|
|
|
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
|
|
|
|
|
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
|
|
|
|
|
--/
|
|
|
|
|
def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
2024-10-15 06:08:56 +00:00
|
|
|
|
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
|
|
|
|
S.F.obj (OverColor.mk c) ⟶
|
|
|
|
|
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
|
|
|
|
(S.contrIso c i j h).hom ≫
|
|
|
|
|
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
|
|
|
|
(MonoidalCategory.leftUnitor _).hom
|
|
|
|
|
|
2024-10-07 12:20:53 +00:00
|
|
|
|
end TensorStruct
|
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- A syntax tree for tensor expressions. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Type where
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- A general tensor node. -/
|
2024-10-08 07:52:55 +00:00
|
|
|
|
| tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- A node consisting of a single vector. -/
|
|
|
|
|
| vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c]
|
|
|
|
|
/-- A node consisting of a two tensor. -/
|
|
|
|
|
| twoNode {c1 c2 : S.C}
|
2024-10-17 11:43:33 +00:00
|
|
|
|
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
TensorTree S ![c1, c2]
|
|
|
|
|
/-- A node consisting of a three tensor. -/
|
|
|
|
|
| threeNode {c1 c2 c3 : S.C}
|
|
|
|
|
(v : S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
|
|
|
|
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3]
|
|
|
|
|
/-- A general constant node. -/
|
|
|
|
|
| constNode {n : ℕ} {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) :
|
|
|
|
|
TensorTree S c
|
|
|
|
|
/-- A constant vector. -/
|
|
|
|
|
| constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) :
|
|
|
|
|
TensorTree S ![c]
|
|
|
|
|
/-- A constant two tensor (e.g. metric and unit). -/
|
|
|
|
|
| constTwoNode {c1 c2 : S.C}
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
|
|
|
|
TensorTree S ![c1, c2]
|
|
|
|
|
/-- A constant three tensor (e.g. Pauli-matrices). -/
|
|
|
|
|
| constThreeNode {c1 c2 c3 : S.C}
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
|
|
|
|
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3]
|
|
|
|
|
/-- A node corresponding to the addition of two tensors. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- A node corresponding to the permutation of indices of a tensor. -/
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
|
|
|
|
|
| prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
|
2024-10-08 15:45:51 +00:00
|
|
|
|
| smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
|
2024-10-17 11:43:33 +00:00
|
|
|
|
/-- The negative of a node. -/
|
|
|
|
|
| neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c
|
2024-10-16 16:38:36 +00:00
|
|
|
|
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
|
|
|
|
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
|
|
|
|
|
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
2024-10-08 07:26:23 +00:00
|
|
|
|
| eval {n : ℕ} {c : Fin n.succ → S.C} :
|
|
|
|
|
(i : Fin n.succ) → (x : Fin (S.evalNo (c i))) → TensorTree S c →
|
2024-10-08 07:52:55 +00:00
|
|
|
|
TensorTree S (c ∘ Fin.succAbove i)
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
|
|
|
|
namespace TensorTree
|
|
|
|
|
|
|
|
|
|
variable {S : TensorStruct} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c)
|
|
|
|
|
|
|
|
|
|
open MonoidalCategory
|
|
|
|
|
open TensorProduct
|
|
|
|
|
|
2024-10-16 16:38:36 +00:00
|
|
|
|
/-- The node `twoNode` of a tensor tree, with all arguments explicit. -/
|
|
|
|
|
abbrev twoNodeE (S : TensorStruct) (c1 c2 : S.C)
|
2024-10-17 11:43:33 +00:00
|
|
|
|
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
TensorTree S ![c1, c2] := twoNode v
|
|
|
|
|
|
|
|
|
|
/-- The node `constTwoNodeE` of a tensor tree, with all arguments explicit. -/
|
|
|
|
|
abbrev constTwoNodeE (S : TensorStruct) (c1 c2 : S.C)
|
2024-10-16 16:42:20 +00:00
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
2024-10-16 16:38:36 +00:00
|
|
|
|
TensorTree S ![c1, c2] := constTwoNode v
|
|
|
|
|
|
|
|
|
|
/-- The node `constThreeNodeE` of a tensor tree, with all arguments explicit. -/
|
2024-10-16 16:42:20 +00:00
|
|
|
|
abbrev constThreeNodeE (S : TensorStruct) (c1 c2 c3 : S.C)
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
2024-10-16 16:38:36 +00:00
|
|
|
|
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
|
|
|
|
|
constThreeNode v
|
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The number of nodes in a tensor tree. -/
|
|
|
|
|
def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| tensorNode _ => 1
|
2024-10-16 16:38:36 +00:00
|
|
|
|
| vecNode _ => 1
|
|
|
|
|
| twoNode _ => 1
|
|
|
|
|
| threeNode _ => 1
|
|
|
|
|
| constNode _ => 1
|
|
|
|
|
| constVecNode _ => 1
|
|
|
|
|
| constTwoNode _ => 1
|
|
|
|
|
| constThreeNode _ => 1
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| add t1 t2 => t1.size + t2.size + 1
|
|
|
|
|
| perm _ t => t.size + 1
|
2024-10-17 11:43:33 +00:00
|
|
|
|
| neg t => t.size + 1
|
2024-10-08 15:45:51 +00:00
|
|
|
|
| smul _ t => t.size + 1
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| prod t1 t2 => t1.size + t2.size + 1
|
2024-10-16 16:38:36 +00:00
|
|
|
|
| contr _ _ _ t => t.size + 1
|
2024-10-08 07:26:23 +00:00
|
|
|
|
| eval _ _ t => t.size + 1
|
2024-10-07 12:20:53 +00:00
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
|
2024-10-08 07:52:55 +00:00
|
|
|
|
/-- The underlying tensor a tensor tree corresponds to.
|
|
|
|
|
Note: This function is not fully defined yet. -/
|
|
|
|
|
def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| tensorNode t => t
|
2024-10-17 11:43:33 +00:00
|
|
|
|
| constTwoNode t => (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (t.hom (1 : S.k))
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| add t1 t2 => t1.tensor + t2.tensor
|
|
|
|
|
| perm σ t => (S.F.map σ).hom t.tensor
|
2024-10-17 11:43:33 +00:00
|
|
|
|
| neg t => - t.tensor
|
2024-10-08 15:45:51 +00:00
|
|
|
|
| smul a t => a • t.tensor
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
|
|
|
|
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
|
2024-10-16 16:42:20 +00:00
|
|
|
|
| contr i j h t => (S.contrMap _ i j h).hom t.tensor
|
2024-10-07 12:20:53 +00:00
|
|
|
|
| _ => 0
|
|
|
|
|
|
2024-10-17 11:43:33 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Tensor on different nodes.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma tensoreNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
2024-10-07 12:20:53 +00:00
|
|
|
|
(tensorNode T).tensor = T := rfl
|
|
|
|
|
|
2024-10-17 11:43:33 +00:00
|
|
|
|
@[simp]
|
|
|
|
|
lemma constTwoNode_tensor {c1 c2 : S.C}
|
|
|
|
|
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
|
|
|
|
(constTwoNode v).tensor = (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1) (t2 : TensorTree S c2) :
|
|
|
|
|
(prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
|
|
|
|
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl
|
|
|
|
|
|
|
|
|
|
lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl
|
|
|
|
|
|
|
|
|
|
lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) :
|
|
|
|
|
(perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl
|
|
|
|
|
|
|
|
|
|
lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)}
|
|
|
|
|
(t : TensorTree S c) : (contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl
|
|
|
|
|
|
|
|
|
|
lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Equality of tensors and rewrites.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
lemma contr_tensor_eq {n : ℕ} {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c}
|
|
|
|
|
(h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ}
|
|
|
|
|
{h' : c (i.succAbove j) = S.τ (c i)} :
|
|
|
|
|
(contr i j h' T1).tensor = (contr i j h' T2).tensor := by
|
|
|
|
|
simp only [Nat.succ_eq_add_one, contr_tensor]
|
|
|
|
|
rw [h]
|
|
|
|
|
|
|
|
|
|
lemma prod_tensor_eq_fst {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
{T1 T1' : TensorTree S c} { T2 : TensorTree S c1}
|
|
|
|
|
(h : T1.tensor = T1'.tensor) :
|
|
|
|
|
(prod T1 T2).tensor = (prod T1' T2).tensor := by
|
|
|
|
|
simp [prod_tensor]
|
|
|
|
|
rw [h]
|
|
|
|
|
|
|
|
|
|
lemma prod_tensor_eq_snd {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|
|
|
|
{T1 : TensorTree S c} {T2 T2' : TensorTree S c1}
|
|
|
|
|
(h : T2.tensor = T2'.tensor) :
|
|
|
|
|
(prod T1 T2).tensor = (prod T1 T2').tensor := by
|
|
|
|
|
simp [prod_tensor]
|
|
|
|
|
rw [h]
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Negation lemmas
|
|
|
|
|
|
|
|
|
|
We define the simp lemmas here so that negation is always moved to the top of the tree.
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma neg_neg (t : TensorTree S c) : (neg (neg t)).tensor = t.tensor := by
|
|
|
|
|
simp only [neg_tensor, _root_.neg_neg]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma neg_fst_prod {c1 : Fin n → S.C} {c2 : Fin m → S.C} (T1 : TensorTree S c1)
|
|
|
|
|
(T2 : TensorTree S c2) :
|
|
|
|
|
(prod (neg T1) T2).tensor = (neg (prod T1 T2)).tensor := by
|
|
|
|
|
simp only [prod_tensor, Functor.id_obj, Action.instMonoidalCategory_tensorObj_V,
|
|
|
|
|
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj, neg_tensor, neg_tmul, map_neg]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma neg_snd_prod {c1 : Fin n → S.C} {c2 : Fin m → S.C} (T1 : TensorTree S c1)
|
|
|
|
|
(T2 : TensorTree S c2) :
|
|
|
|
|
(prod T1 (neg T2)).tensor = (neg (prod T1 T2)).tensor := by
|
|
|
|
|
simp only [prod_tensor, Functor.id_obj, Action.instMonoidalCategory_tensorObj_V,
|
|
|
|
|
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj, neg_tensor, tmul_neg, map_neg]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma neg_contr {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)}
|
|
|
|
|
(t : TensorTree S c) : (contr i j h (neg t)).tensor = (neg (contr i j h t)).tensor := by
|
|
|
|
|
simp only [Nat.succ_eq_add_one, contr_tensor, neg_tensor, map_neg]
|
|
|
|
|
|
2024-10-07 12:20:53 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end TensorTree
|
2024-10-15 06:08:56 +00:00
|
|
|
|
|
|
|
|
|
end
|