PhysLean/HepLean/SpaceTime/LorentzAlgebra/Basis.lean

149 lines
6 KiB
Text
Raw Normal View History

2024-06-11 11:16:31 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzAlgebra.Basic
/-!
# Basis of the Lorentz Algebra
We define the standard basis of the Lorentz group.
-/
namespace SpaceTime
2024-06-11 11:16:31 -04:00
namespace lorentzAlgebra
open Matrix
2024-06-11 11:33:50 -04:00
/-- The matrices which form the basis of the Lorentz algebra. -/
2024-06-11 11:16:31 -04:00
@[simp]
def σMat (μ ν : Fin 4) : Matrix (Fin 4) (Fin 4) := fun ρ δ ↦
2024-06-12 13:19:57 -04:00
η_[μ]_[δ] * η^[ρ]_[ν] - η^[ρ]_[μ] * η_[ν]_[δ]
2024-06-11 11:16:31 -04:00
lemma σMat_in_lorentzAlgebra (μ ν : Fin 4) : σMat μ ν ∈ lorentzAlgebra := by
rw [mem_iff]
funext ρ δ
rw [Matrix.neg_mul, Matrix.neg_apply, η_mul, mul_η, transpose_apply]
apply Eq.trans ?_ (by ring :
2024-06-12 13:19:57 -04:00
((η^[ρ]_[μ] * η_[ρ]_[ρ]) * η_[ν]_[δ] - η_[μ]_[δ] * (η^[ρ]_[ν] * η_[ρ]_[ρ])) =
-(η_[ρ]_[ρ] * (η_[μ]_[δ] * η^[ρ]_[ν] - η^[ρ]_[μ] * η_[ν]_[δ] )))
apply Eq.trans (by ring : (η_[μ]_[ρ] * η^[δ]_[ν] - η^[δ]_[μ] * η_[ν]_[ρ]) * η_[δ]_[δ]
= (- (η^[δ]_[μ] * η_[δ]_[δ]) * η_[ν]_[ρ] + η_[μ]_[ρ] * (η^[δ]_[ν] * η_[δ]_[δ])))
rw [η_mul_self, η_mul_self, η_mul_self, η_mul_self]
ring
/-- Elements of the Lorentz algebra which form a basis thereof. -/
@[simps!]
def σν : Fin 4) : lorentzAlgebra := ⟨σMat μ ν, σMat_in_lorentzAlgebra μ ν⟩
lemma σ_anti_symm (μ ν : Fin 4) : σ μ ν = - σ ν μ := by
refine SetCoe.ext ?_
funext ρ δ
simp only [σ_coe, σMat, NegMemClass.coe_neg, neg_apply, neg_sub]
ring
lemma σMat_mul (α β γ δ a b: Fin 4) :
(σMat α β * σMat γ δ) a b =
η^[a]_[α] * (η_[δ]_[b] * η_[β]_[γ] - η_[γ]_[b] * η_[β]_[δ])
- η^[a]_[β] * (η_[δ]_[b] * η_[α]_[γ]- η_[γ]_[b] * η_[α]_[δ]) := by
rw [Matrix.mul_apply]
simp only [σMat]
trans (η^[a]_[α] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[β]_[x]
- (η^[a]_[α] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[β]_[x]
- (η^[a]_[β] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[α]_[x]
+ (η^[a]_[β] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[α]_[x]
repeat rw [Fin.sum_univ_four]
ring
rw [η_contract_self', η_contract_self', η_contract_self', η_contract_self']
ring
lemma σ_comm (α β γ δ : Fin 4) :
⁅σ α β , σ γ δ⁆ =
2024-06-12 13:19:57 -04:00
η_[α]_[δ] • σ γ β + η_[α]_[γ] • σ β δ + η_[β]_[δ] • σ α γ + η_[β]_[γ] • σ δ α := by
refine SetCoe.ext ?_
change σMat α β * σ γ δ - σ γ δ * σ α β = _
funext a b
simp only [σ_coe, sub_apply, AddSubmonoid.coe_add, Submodule.coe_toAddSubmonoid,
2024-06-12 16:03:53 -04:00
Submodule.coe_smul_of_tower, Matrix.add_apply, Matrix.smul_apply, σMat, smul_eq_mul]
rw [σMat_mul, σMat_mul, η_symmetric α γ, η_symmetric α δ, η_symmetric β γ, η_symmetric β δ]
ring
2024-06-12 13:19:57 -04:00
lemma eq_span_σ (Λ : lorentzAlgebra) :
Λ = Λ.1 0 1 • σ 0 1 + Λ.1 0 2 • σ 0 2 + Λ.1 0 3 • σ 0 3 +
Λ.1 1 2 • σ 1 2 + Λ.1 1 3 • σ 1 3 + Λ.1 2 3 • σ 2 3 := by
apply SetCoe.ext ?_
funext a b
fin_cases a <;> fin_cases b <;>
simp only [Fin.zero_eta, Fin.isValue, Fin.mk_one, Fin.reduceFinMk, AddSubmonoid.coe_add,
Submodule.coe_smul_of_tower, σ_coe,
2024-06-12 16:03:53 -04:00
Matrix.add_apply, Matrix.smul_apply, σMat, ηUpDown, ne_eq, zero_ne_one, not_false_eq_true,
2024-06-12 13:19:57 -04:00
one_apply_ne, η_explicit, of_apply, cons_val_zero,
mul_zero, one_apply_eq, mul_one, sub_neg_eq_add,
zero_add, smul_eq_mul, Fin.reduceEq, cons_val_one, vecHead, vecTail,
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, sub_self, add_zero, cons_val_two,
cons_val_three, Fin.succ_one_eq_two, mul_neg, neg_zero, sub_zero]
· exact diag_comp Λ 0
· exact time_comps Λ 0
· exact diag_comp Λ 1
· exact time_comps Λ 1
· exact space_comps Λ 1 0
· exact diag_comp Λ 2
· exact time_comps Λ 2
· exact space_comps Λ 2 0
· exact space_comps Λ 2 1
· exact diag_comp Λ 3
/-- The coordinate map for the basis formed by the matrices `σ`. -/
@[simps!]
noncomputable def σCoordinateMap : lorentzAlgebra ≃ₗ[] Fin 6 →₀ where
toFun Λ := Finsupp.equivFunOnFinite.invFun
fun i => match i with
| 0 => Λ.1 0 1
| 1 => Λ.1 0 2
| 2 => Λ.1 0 3
| 3 => Λ.1 1 2
| 4 => Λ.1 1 3
| 5 => Λ.1 2 3
map_add' S T := by
ext i
fin_cases i <;> rfl
map_smul' c S := by
ext i
fin_cases i <;> rfl
invFun c := c 0 • σ 0 1 + c 1 • σ 0 2 + c 2 • σ 0 3 +
c 3 • σ 1 2 + c 4 • σ 1 3 + c 5 • σ 2 3
left_inv Λ := by
2024-06-12 13:21:02 -04:00
simp only [Fin.isValue, Equiv.invFun_as_coe, Finsupp.equivFunOnFinite_symm_apply_toFun]
2024-06-12 13:19:57 -04:00
exact (eq_span_σ Λ).symm
right_inv c := by
ext i
2024-06-12 13:21:02 -04:00
fin_cases i <;> simp only [Fin.isValue, Set.Finite.toFinset_setOf, ne_eq, Finsupp.coe_mk,
Fin.zero_eta, Fin.isValue, Fin.mk_one, Fin.reduceFinMk, AddSubmonoid.coe_add,
2024-06-12 13:19:57 -04:00
Submodule.coe_toAddSubmonoid, Submodule.coe_smul_of_tower, σ_coe,
2024-06-12 16:03:53 -04:00
Matrix.add_apply, Matrix.smul_apply, σMat, ηUpDown, ne_eq, zero_ne_one, not_false_eq_true,
2024-06-12 13:19:57 -04:00
one_apply_ne, η_explicit, of_apply, cons_val', cons_val_zero, empty_val',
cons_val_fin_one, vecCons_const, mul_zero, one_apply_eq, mul_one, sub_neg_eq_add,
zero_add, smul_eq_mul, Fin.reduceEq, cons_val_one, vecHead, vecTail, Nat.succ_eq_add_one,
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, sub_self, add_zero, cons_val_two,
cons_val_three, Fin.succ_one_eq_two, mul_neg, neg_zero, sub_zero, Finsupp.equivFunOnFinite]
/-- The basis formed by the matrices `σ`. -/
2024-06-12 13:30:32 -04:00
@[simps! repr_apply_support_val repr_apply_toFun]
2024-06-12 13:19:57 -04:00
noncomputable def σBasis : Basis (Fin 6) lorentzAlgebra where
repr := σCoordinateMap
instance : Module.Finite lorentzAlgebra :=
Module.Finite.of_basis σBasis
/-- The Lorentz algebra is 6-dimensional. -/
theorem finrank_eq_six : FiniteDimensional.finrank lorentzAlgebra = 6 := by
have h := Module.mk_finrank_eq_card_basis σBasis
2024-06-13 08:10:08 -04:00
simp only [finrank_eq_rank, Cardinal.mk_fintype, Fintype.card_fin, Nat.cast_ofNat] at h
exact FiniteDimensional.finrank_eq_of_rank_eq h
2024-06-11 11:16:31 -04:00
end lorentzAlgebra
end SpaceTime