2024-05-09 15:09:14 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import Mathlib.Data.Complex.Exponential
|
|
|
|
|
import Mathlib.Geometry.Manifold.Instances.Real
|
|
|
|
|
import Mathlib.LinearAlgebra.Matrix.ToLin
|
|
|
|
|
/-!
|
|
|
|
|
# Representations appearing in the Standard Model
|
|
|
|
|
|
|
|
|
|
This file defines the basic representations which appear in the Standard Model.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
universe v u
|
|
|
|
|
namespace StandardModel
|
|
|
|
|
|
|
|
|
|
open Manifold
|
|
|
|
|
open Matrix
|
|
|
|
|
open Complex
|
|
|
|
|
open ComplexConjugate
|
|
|
|
|
|
2024-05-09 15:16:38 -04:00
|
|
|
|
/-- The 2d representation of U(1) with charge 3 as a map from U(1) to `unitaryGroup (Fin 2) ℂ`. -/
|
2024-05-09 15:09:14 -04:00
|
|
|
|
@[simps!]
|
|
|
|
|
noncomputable def repU1Map (g : unitary ℂ) : unitaryGroup (Fin 2) ℂ :=
|
|
|
|
|
⟨g ^ 3 • 1, by
|
|
|
|
|
rw [mem_unitaryGroup_iff, smul_one_mul, show g = ⟨g.1, g.prop⟩ from rfl]
|
|
|
|
|
simp only [SubmonoidClass.mk_pow, Submonoid.mk_smul, star_smul, star_pow, RCLike.star_def,
|
|
|
|
|
star_one]
|
|
|
|
|
rw [smul_smul, ← mul_pow]
|
|
|
|
|
erw [(unitary.mem_iff.mp g.prop).2]
|
|
|
|
|
simp only [one_pow, one_smul]⟩
|
|
|
|
|
|
2024-05-09 15:16:38 -04:00
|
|
|
|
/-- The 2d representation of U(1) with charge 3 as a homomorphism
|
|
|
|
|
from U(1) to `unitaryGroup (Fin 2) ℂ`. -/
|
2024-05-09 15:09:14 -04:00
|
|
|
|
@[simps!]
|
|
|
|
|
noncomputable def repU1 : unitary ℂ →* unitaryGroup (Fin 2) ℂ where
|
|
|
|
|
toFun g := repU1Map g
|
|
|
|
|
map_mul' g h := by
|
|
|
|
|
simp only [repU1Map, Submonoid.mk_mul_mk, mul_smul_one, smul_smul, mul_comm, ← mul_pow]
|
|
|
|
|
map_one' := by
|
|
|
|
|
simp only [repU1Map, one_pow, one_smul, Submonoid.mk_eq_one]
|
|
|
|
|
|
2024-05-09 15:16:38 -04:00
|
|
|
|
/-- The fundamental representation of SU(2) as a homomorphism to `unitaryGroup (Fin 2) ℂ`. -/
|
2024-05-09 15:09:14 -04:00
|
|
|
|
@[simps!]
|
|
|
|
|
def fundamentalSU2 : specialUnitaryGroup (Fin 2) ℂ →* unitaryGroup (Fin 2) ℂ where
|
|
|
|
|
toFun g := ⟨g.1, g.prop.1⟩
|
|
|
|
|
map_mul' _ _ := Subtype.ext rfl
|
|
|
|
|
map_one' := Subtype.ext rfl
|
|
|
|
|
|
|
|
|
|
lemma repU1_fundamentalSU2_commute (u1 : unitary ℂ) (g : specialUnitaryGroup (Fin 2) ℂ) :
|
|
|
|
|
repU1 u1 * fundamentalSU2 g = fundamentalSU2 g * repU1 u1 := by
|
|
|
|
|
apply Subtype.ext
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
end StandardModel
|