PhysLean/HepLean/SpaceTime/WeylFermion/Two.lean

627 lines
29 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.WeylFermion.Basic
import HepLean.SpaceTime.WeylFermion.Contraction
import Mathlib.LinearAlgebra.TensorProduct.Matrix
/-!
# Tensor product of two Weyl fermion
-/
namespace Fermion
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open CategoryTheory.MonoidalCategory
/-!
## Equivalences to matrices.
-/
/-- Equivalence of `leftHanded ⊗ leftHanded` to `2 x 2` complex matrices. -/
def leftLeftToMatrix : (leftHanded ⊗ leftHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct leftBasis leftBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `altLeftHanded ⊗ altLeftHanded` to `2 x 2` complex matrices. -/
def altLeftaltLeftToMatrix : (altLeftHanded ⊗ altLeftHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct altLeftBasis altLeftBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `leftHanded ⊗ altLeftHanded` to `2 x 2` complex matrices. -/
def leftAltLeftToMatrix : (leftHanded ⊗ altLeftHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct leftBasis altLeftBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `altLeftHanded ⊗ leftHanded` to `2 x 2` complex matrices. -/
def altLeftLeftToMatrix : (altLeftHanded ⊗ leftHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct altLeftBasis leftBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `rightHanded ⊗ rightHanded` to `2 x 2` complex matrices. -/
def rightRightToMatrix : (rightHanded ⊗ rightHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct rightBasis rightBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `altRightHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
def altRightAltRightToMatrix : (altRightHanded ⊗ altRightHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct altRightBasis altRightBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `rightHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
def rightAltRightToMatrix : (rightHanded ⊗ altRightHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct rightBasis altRightBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `altRightHanded ⊗ rightHanded` to `2 x 2` complex matrices. -/
def altRightRightToMatrix : (altRightHanded ⊗ rightHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct altRightBasis rightBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
2024-10-16 10:39:11 +00:00
/-- Equivalence of `altLeftHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
def altLeftAltRightToMatrix : (altLeftHanded ⊗ altRightHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct altLeftBasis altRightBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-- Equivalence of `leftHanded ⊗ rightHanded` to `2 x 2` complex matrices. -/
def leftRightToMatrix : (leftHanded ⊗ rightHanded).V ≃ₗ[] Matrix (Fin 2) (Fin 2) :=
(Basis.tensorProduct leftBasis rightBasis).repr ≪≫ₗ
Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2) ≪≫ₗ
LinearEquiv.curry (Fin 2) (Fin 2)
/-!
## Group actions
-/
/-- The group action of `SL(2,)` on `leftHanded ⊗ leftHanded` is equivalent to
`M.1 * leftLeftToMatrix v * (M.1)ᵀ`. -/
lemma leftLeftToMatrix_ρ (v : (leftHanded ⊗ leftHanded).V) (M : SL(2,)) :
leftLeftToMatrix (TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M) v) =
M.1 * leftLeftToMatrix v * (M.1)ᵀ := by
nth_rewrite 1 [leftLeftToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(leftBasis.tensorProduct leftBasis) (leftBasis.tensorProduct leftBasis)
(TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((leftBasis.tensorProduct leftBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (leftBasis.tensorProduct leftBasis)
2024-10-15 11:39:40 +00:00
(leftBasis.tensorProduct leftBasis) (TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M))
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M)) (i, j) k)
* leftLeftToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
have h1 : ∑ x : Fin 2, (∑ j : Fin 2, M.1 i j * leftLeftToMatrix v j x) * M.1 j x
2024-10-15 11:39:40 +00:00
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftLeftToMatrix v x1 x) * M.1 j x := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [leftBasis_ρ_apply, Finsupp.linearEquivFunOnFinite_apply,
Action.instMonoidalCategory_tensorObj_V]
rw [mul_assoc]
nth_rewrite 2 [mul_comm]
rw [← mul_assoc]
/-- The group action of `SL(2,)` on `altLeftHanded ⊗ altLeftHanded` is equivalent to
`(M.1⁻¹)ᵀ * leftLeftToMatrix v * (M.1⁻¹)`. -/
lemma altLeftaltLeftToMatrix_ρ (v : (altLeftHanded ⊗ altLeftHanded).V) (M : SL(2,)) :
altLeftaltLeftToMatrix (TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M) v) =
(M.1⁻¹)ᵀ * altLeftaltLeftToMatrix v * (M.1⁻¹) := by
nth_rewrite 1 [altLeftaltLeftToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(altLeftBasis.tensorProduct altLeftBasis) (altLeftBasis.tensorProduct altLeftBasis)
(TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((altLeftBasis.tensorProduct altLeftBasis).repr v)))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (altLeftBasis.tensorProduct altLeftBasis)
2024-10-15 11:39:40 +00:00
(altLeftBasis.tensorProduct altLeftBasis)
(TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M))
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M)) (i, j) k)
* altLeftaltLeftToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1)⁻¹ x1 i * altLeftaltLeftToMatrix v x1 x) * (M.1)⁻¹ x j
= ∑ x : Fin 2, ∑ x1 : Fin 2, ((M.1)⁻¹ x1 i * altLeftaltLeftToMatrix v x1 x) * (M.1)⁻¹ x j := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [altLeftBasis_ρ_apply, transpose_apply, Action.instMonoidalCategory_tensorObj_V]
ring
/-- The group action of `SL(2,)` on `leftHanded ⊗ altLeftHanded` is equivalent to
`M.1 * leftAltLeftToMatrix v * (M.1⁻¹)`. -/
lemma leftAltLeftToMatrix_ρ (v : (leftHanded ⊗ altLeftHanded).V) (M : SL(2,)) :
leftAltLeftToMatrix (TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M) v) =
M.1 * leftAltLeftToMatrix v * (M.1⁻¹) := by
nth_rewrite 1 [leftAltLeftToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(leftBasis.tensorProduct altLeftBasis) (leftBasis.tensorProduct altLeftBasis)
(TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((leftBasis.tensorProduct altLeftBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (leftBasis.tensorProduct altLeftBasis)
2024-10-15 11:39:40 +00:00
(leftBasis.tensorProduct altLeftBasis)
(TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M))
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M)) (i, j) k)
* leftAltLeftToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply]
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, M.1 i x1 * leftAltLeftToMatrix v x1 x) * (M.1⁻¹) x j
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftAltLeftToMatrix v x1 x) * (M.1⁻¹) x j := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [leftBasis_ρ_apply, altLeftBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
/-- The group action of `SL(2,)` on `altLeftHanded ⊗ leftHanded` is equivalent to
`(M.1⁻¹)ᵀ * leftAltLeftToMatrix v * (M.1)ᵀ`. -/
lemma altLeftLeftToMatrix_ρ (v : (altLeftHanded ⊗ leftHanded).V) (M : SL(2,)) :
altLeftLeftToMatrix (TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M) v) =
(M.1⁻¹)ᵀ * altLeftLeftToMatrix v * (M.1)ᵀ := by
nth_rewrite 1 [altLeftLeftToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(altLeftBasis.tensorProduct leftBasis) (altLeftBasis.tensorProduct leftBasis)
(TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((altLeftBasis.tensorProduct leftBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (altLeftBasis.tensorProduct leftBasis)
2024-10-15 11:39:40 +00:00
(altLeftBasis.tensorProduct leftBasis)
(TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M))
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M)) (i, j) k)
* altLeftLeftToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1)⁻¹ x1 i * altLeftLeftToMatrix v x1 x) * M.1 j x
= ∑ x : Fin 2, ∑ x1 : Fin 2, ((M.1)⁻¹ x1 i * altLeftLeftToMatrix v x1 x) * M.1 j x:= by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [altLeftBasis_ρ_apply, leftBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
/-- The group action of `SL(2,)` on `rightHanded ⊗ rightHanded` is equivalent to
`(M.1.map star) * rightRightToMatrix v * ((M.1.map star))ᵀ`. -/
lemma rightRightToMatrix_ρ (v : (rightHanded ⊗ rightHanded).V) (M : SL(2,)) :
rightRightToMatrix (TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M) v) =
(M.1.map star) * rightRightToMatrix v * ((M.1.map star))ᵀ := by
nth_rewrite 1 [rightRightToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(rightBasis.tensorProduct rightBasis) (rightBasis.tensorProduct rightBasis)
(TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((rightBasis.tensorProduct rightBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (rightBasis.tensorProduct rightBasis)
2024-10-15 11:39:40 +00:00
(rightBasis.tensorProduct rightBasis)
(TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M))
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M)) (i, j) k)
* rightRightToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 11:39:40 +00:00
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1.map star) i x1 * rightRightToMatrix v x1 x) *
(M.1.map star) j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
((M.1.map star) i x1 * rightRightToMatrix v x1 x) * (M.1.map star) j x:= by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [rightBasis_ρ_apply, Finsupp.linearEquivFunOnFinite_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
/-- The group action of `SL(2,)` on `altRightHanded ⊗ altRightHanded` is equivalent to
`((M.1⁻¹).conjTranspose * rightRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ`. -/
lemma altRightAltRightToMatrix_ρ (v : (altRightHanded ⊗ altRightHanded).V) (M : SL(2,)) :
altRightAltRightToMatrix (TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M) v) =
((M.1⁻¹).conjTranspose) * altRightAltRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ) := by
nth_rewrite 1 [altRightAltRightToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(altRightBasis.tensorProduct altRightBasis) (altRightBasis.tensorProduct altRightBasis)
(TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((altRightBasis.tensorProduct altRightBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (altRightBasis.tensorProduct altRightBasis)
2024-10-15 11:39:40 +00:00
(altRightBasis.tensorProduct altRightBasis)
(TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M))
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M)) (i, j) k)
* altRightAltRightToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 11:39:40 +00:00
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (↑M)⁻¹ᴴ i x1 * altRightAltRightToMatrix v x1 x) *
(↑M)⁻¹ᴴ j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
((↑M)⁻¹ᴴ i x1 * altRightAltRightToMatrix v x1 x) * (↑M)⁻¹ᴴ j x := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [altRightBasis_ρ_apply, transpose_apply, Action.instMonoidalCategory_tensorObj_V]
ring
/-- The group action of `SL(2,)` on `rightHanded ⊗ altRightHanded` is equivalent to
`(M.1.map star) * rightAltRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ`. -/
lemma rightAltRightToMatrix_ρ (v : (rightHanded ⊗ altRightHanded).V) (M : SL(2,)) :
rightAltRightToMatrix (TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M) v) =
(M.1.map star) * rightAltRightToMatrix v * (((M.1⁻¹).conjTranspose)ᵀ) := by
nth_rewrite 1 [rightAltRightToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(rightBasis.tensorProduct altRightBasis) (rightBasis.tensorProduct altRightBasis)
(TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((rightBasis.tensorProduct altRightBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (rightBasis.tensorProduct altRightBasis)
2024-10-15 11:39:40 +00:00
(rightBasis.tensorProduct altRightBasis)
(TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M))
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M)) (i, j) k)
* rightAltRightToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 11:39:40 +00:00
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1.map star) i x1 * rightAltRightToMatrix v x1 x)
* (↑M)⁻¹ᴴ j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
((M.1.map star) i x1 * rightAltRightToMatrix v x1 x) * (↑M)⁻¹ᴴ j x := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [rightBasis_ρ_apply, altRightBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
/-- The group action of `SL(2,)` on `altRightHanded ⊗ rightHanded` is equivalent to
`((M.1⁻¹).conjTranspose * rightAltRightToMatrix v * ((M.1.map star)).ᵀ`. -/
lemma altRightRightToMatrix_ρ (v : (altRightHanded ⊗ rightHanded).V) (M : SL(2,)) :
altRightRightToMatrix (TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M) v) =
((M.1⁻¹).conjTranspose) * altRightRightToMatrix v * (M.1.map star)ᵀ := by
nth_rewrite 1 [altRightRightToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(altRightBasis.tensorProduct rightBasis) (altRightBasis.tensorProduct rightBasis)
(TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((altRightBasis.tensorProduct rightBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (altRightBasis.tensorProduct rightBasis)
2024-10-15 11:39:40 +00:00
(altRightBasis.tensorProduct rightBasis)
(TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M))
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M)) (i, j) k)
* altRightRightToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
2024-10-15 11:39:40 +00:00
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2,
(↑M)⁻¹ᴴ i x1 * altRightRightToMatrix v x1 x) * (M.1.map star) j x
= ∑ x : Fin 2, ∑ x1 : Fin 2, ((↑M)⁻¹ᴴ i x1 * altRightRightToMatrix v x1 x) *
(M.1.map star) j x := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [altRightBasis_ρ_apply, rightBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
2024-10-16 10:39:11 +00:00
lemma altLeftAltRightToMatrix_ρ (v : (altLeftHanded ⊗ altRightHanded).V) (M : SL(2,)) :
altLeftAltRightToMatrix (TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M) v) =
(M.1⁻¹)ᵀ * altLeftAltRightToMatrix v * ((M.1⁻¹).conjTranspose)ᵀ := by
nth_rewrite 1 [altLeftAltRightToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(altLeftBasis.tensorProduct altRightBasis) (altLeftBasis.tensorProduct altRightBasis)
(TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((altLeftBasis.tensorProduct altRightBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (altLeftBasis.tensorProduct altRightBasis)
(altLeftBasis.tensorProduct altRightBasis)
(TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M))
((LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M)) (i, j) k)
* altLeftAltRightToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply, Matrix.transpose_apply]
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, (M.1)⁻¹ x1 i * altLeftAltRightToMatrix v x1 x) *
(M.1)⁻¹ᴴ j x = ∑ x : Fin 2, ∑ x1 : Fin 2,
((M.1)⁻¹ x1 i * altLeftAltRightToMatrix v x1 x) * (M.1)⁻¹ᴴ j x:= by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [altLeftBasis_ρ_apply, altRightBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
ring
def leftRightToMatrix_ρ (v : (leftHanded ⊗ rightHanded).V) (M : SL(2,)) :
leftRightToMatrix (TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) v) =
M.1 * leftRightToMatrix v * (M.1)ᴴ := by
nth_rewrite 1 [leftRightToMatrix]
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.trans_apply]
trans (LinearEquiv.curry (Fin 2) (Fin 2)) ((LinearMap.toMatrix
(leftBasis.tensorProduct rightBasis) (leftBasis.tensorProduct rightBasis)
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M)))
*ᵥ ((Finsupp.linearEquivFunOnFinite (Fin 2 × Fin 2))
((leftBasis.tensorProduct rightBasis).repr (v))))
· apply congrArg
have h1 := (LinearMap.toMatrix_mulVec_repr (leftBasis.tensorProduct rightBasis)
(leftBasis.tensorProduct rightBasis)
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M)) v)
erw [h1]
rfl
rw [TensorProduct.toMatrix_map]
funext i j
change ∑ k, ((kroneckerMap (fun x1 x2 => x1 * x2)
((LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M))
((LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M)) (i, j) k)
* leftRightToMatrix v k.1 k.2) = _
erw [Finset.sum_product]
simp_rw [kroneckerMap_apply, Matrix.mul_apply]
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j := by
congr
funext x
rw [Finset.sum_mul]
erw [h1]
rw [Finset.sum_comm]
congr
funext x
congr
funext x1
simp only [leftBasis_ρ_apply, rightBasis_ρ_apply, transpose_apply,
Action.instMonoidalCategory_tensorObj_V]
rw [Matrix.conjTranspose]
simp only [RCLike.star_def, map_apply, transpose_apply]
ring
/-!
## The symm version of the group actions.
-/
lemma leftLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M) (leftLeftToMatrix.symm v) =
leftLeftToMatrix.symm (M.1 * v * (M.1)ᵀ) := by
have h1 := leftLeftToMatrix_ρ (leftLeftToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma altLeftaltLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M) (altLeftaltLeftToMatrix.symm v) =
altLeftaltLeftToMatrix.symm ((M.1⁻¹)ᵀ * v * (M.1⁻¹)) := by
have h1 := altLeftaltLeftToMatrix_ρ (altLeftaltLeftToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma leftAltLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (leftHanded.ρ M) (altLeftHanded.ρ M) (leftAltLeftToMatrix.symm v) =
leftAltLeftToMatrix.symm (M.1 * v * (M.1⁻¹)) := by
have h1 := leftAltLeftToMatrix_ρ (leftAltLeftToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma altLeftLeftToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (altLeftHanded.ρ M) (leftHanded.ρ M) (altLeftLeftToMatrix.symm v) =
altLeftLeftToMatrix.symm ((M.1⁻¹)ᵀ * v * (M.1)ᵀ) := by
have h1 := altLeftLeftToMatrix_ρ (altLeftLeftToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma rightRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M) (rightRightToMatrix.symm v) =
rightRightToMatrix.symm ((M.1.map star) * v * ((M.1.map star))ᵀ) := by
have h1 := rightRightToMatrix_ρ (rightRightToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma altRightAltRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M) (altRightAltRightToMatrix.symm v) =
altRightAltRightToMatrix.symm (((M.1⁻¹).conjTranspose) * v * ((M.1⁻¹).conjTranspose)ᵀ) := by
have h1 := altRightAltRightToMatrix_ρ (altRightAltRightToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma rightAltRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (rightHanded.ρ M) (altRightHanded.ρ M) (rightAltRightToMatrix.symm v) =
2024-10-15 11:39:40 +00:00
rightAltRightToMatrix.symm ((M.1.map star) * v * (((M.1⁻¹).conjTranspose)ᵀ)) := by
have h1 := rightAltRightToMatrix_ρ (rightAltRightToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma altRightRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (altRightHanded.ρ M) (rightHanded.ρ M) (altRightRightToMatrix.symm v) =
altRightRightToMatrix.symm (((M.1⁻¹).conjTranspose) * v * (M.1.map star)ᵀ) := by
have h1 := altRightRightToMatrix_ρ (altRightRightToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
2024-10-16 10:39:11 +00:00
lemma altLeftAltRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M) (altLeftAltRightToMatrix.symm v) =
altLeftAltRightToMatrix.symm ((M.1⁻¹)ᵀ * v * ((M.1⁻¹).conjTranspose)ᵀ) := by
have h1 := altLeftAltRightToMatrix_ρ (altLeftAltRightToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
lemma leftRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,)) :
TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) (leftRightToMatrix.symm v) =
leftRightToMatrix.symm (M.1 * v * (M.1)ᴴ) := by
have h1 := leftRightToMatrix_ρ (leftRightToMatrix.symm v) M
simp only [Action.instMonoidalCategory_tensorObj_V, LinearEquiv.apply_symm_apply] at h1
rw [← h1]
simp
open SpaceTime
lemma altLeftAltRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) )
(hv : IsSelfAdjoint v) (M : SL(2,)) :
TensorProduct.map (altLeftHanded.ρ M) (altRightHanded.ρ M) (altLeftAltRightToMatrix.symm v) =
altLeftAltRightToMatrix.symm
(SL2C.repSelfAdjointMatrix (M.transpose⁻¹) ⟨v, hv⟩) := by
rw [altLeftAltRightToMatrix_ρ_symm]
apply congrArg
simp only [SL2C.repSelfAdjointMatrix, MonoidHom.coe_mk, OneHom.coe_mk,
SL2C.toLinearMapSelfAdjointMatrix_apply_coe, SpecialLinearGroup.coe_inv,
SpecialLinearGroup.coe_transpose]
congr
· rw [SL2C.inverse_coe]
simp only [SpecialLinearGroup.coe_inv]
rw [@adjugate_transpose]
· rw [SL2C.inverse_coe]
simp only [SpecialLinearGroup.coe_inv]
rw [← @adjugate_transpose]
rfl
lemma leftRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) )
(hv : IsSelfAdjoint v) (M : SL(2,)) :
TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) (leftRightToMatrix.symm v) =
leftRightToMatrix.symm
(SL2C.repSelfAdjointMatrix M ⟨v, hv⟩) := by
rw [leftRightToMatrix_ρ_symm]
apply congrArg
simp [SpaceTime.SL2C.repSelfAdjointMatrix]
end
end Fermion