2024-11-08 06:07:18 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.Meta.Informal
|
|
|
|
|
import HepLean.SpaceTime.SL2C.Basic
|
|
|
|
|
import Mathlib.RepresentationTheory.Rep
|
|
|
|
|
import Mathlib.Logic.Equiv.TransferInstance
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Modules associated with Real Lorentz vectors
|
|
|
|
|
|
|
|
|
|
We define the modules underlying real Lorentz vectors.
|
|
|
|
|
|
2024-11-08 06:13:03 +00:00
|
|
|
|
These definitions are preludes to the definitions of
|
|
|
|
|
`Lorentz.contr` and `Lorentz.co`.
|
|
|
|
|
|
2024-11-08 06:07:18 +00:00
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
namespace Lorentz
|
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
open Matrix
|
|
|
|
|
open MatrixGroups
|
|
|
|
|
open Complex
|
|
|
|
|
|
|
|
|
|
/-- The module for contravariant (up-index) real Lorentz vectors. -/
|
|
|
|
|
structure ContrℝModule (d : ℕ) where
|
|
|
|
|
/-- The underlying value as a vector `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
val : Fin 1 ⊕ Fin d → ℝ
|
|
|
|
|
|
|
|
|
|
namespace ContrℝModule
|
|
|
|
|
|
|
|
|
|
variable {d : ℕ}
|
|
|
|
|
|
|
|
|
|
/-- The equivalence between `ContrℝModule` and `Fin 1 ⊕ Fin d → ℂ`. -/
|
|
|
|
|
def toFin1dℝFun : ContrℝModule d ≃ (Fin 1 ⊕ Fin d → ℝ) where
|
|
|
|
|
toFun v := v.val
|
|
|
|
|
invFun f := ⟨f⟩
|
|
|
|
|
left_inv _ := rfl
|
|
|
|
|
right_inv _ := rfl
|
|
|
|
|
|
|
|
|
|
/-- The instance of `AddCommMonoid` on `ContrℝModule` defined via its equivalence
|
|
|
|
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
instance : AddCommMonoid (ContrℝModule d) := Equiv.addCommMonoid toFin1dℝFun
|
|
|
|
|
|
|
|
|
|
/-- The instance of `AddCommGroup` on `ContrℝModule` defined via its equivalence
|
|
|
|
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
instance : AddCommGroup (ContrℝModule d) := Equiv.addCommGroup toFin1dℝFun
|
|
|
|
|
|
|
|
|
|
/-- The instance of `Module` on `ContrℝModule` defined via its equivalence
|
|
|
|
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
instance : Module ℝ (ContrℝModule d) := Equiv.module ℝ toFin1dℝFun
|
|
|
|
|
|
|
|
|
|
@[ext]
|
|
|
|
|
lemma ext (ψ ψ' : ContrℝModule d) (h : ψ.val = ψ'.val) : ψ = ψ' := by
|
|
|
|
|
cases ψ
|
|
|
|
|
cases ψ'
|
|
|
|
|
subst h
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma val_add (ψ ψ' : ContrℝModule d) : (ψ + ψ').val = ψ.val + ψ'.val := rfl
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma val_smul (r : ℝ) (ψ : ContrℝModule d) : (r • ψ).val = r • ψ.val := rfl
|
|
|
|
|
|
|
|
|
|
/-- The linear equivalence between `ContrℝModule` and `(Fin 1 ⊕ Fin d → ℝ)`. -/
|
|
|
|
|
@[simps!]
|
2024-11-08 06:41:33 +00:00
|
|
|
|
def toFin1dℝEquiv : ContrℝModule d ≃ₗ[ℝ] (Fin 1 ⊕ Fin d → ℝ) :=
|
|
|
|
|
Equiv.linearEquiv ℝ toFin1dℝFun
|
2024-11-08 06:07:18 +00:00
|
|
|
|
|
|
|
|
|
/-- The underlying element of `Fin 1 ⊕ Fin d → ℝ` of a element in `ContrℝModule` defined
|
|
|
|
|
through the linear equivalence `toFin1dℝEquiv`. -/
|
|
|
|
|
abbrev toFin1dℝ (ψ : ContrℝModule d) := toFin1dℝEquiv ψ
|
|
|
|
|
|
2024-11-08 06:41:33 +00:00
|
|
|
|
/-- The standard basis of `ContrℝModule` indexed by `Fin 1 ⊕ Fin d`. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def stdBasis : Basis (Fin 1 ⊕ Fin d) ℝ (ContrℝModule d) := Basis.ofEquivFun toFin1dℝEquiv
|
|
|
|
|
|
|
|
|
|
/-- The representation of the Lorentz group acting on `ContrℝModule d`. -/
|
|
|
|
|
def rep : Representation ℝ (LorentzGroup d) (ContrℝModule d) where
|
|
|
|
|
toFun g := Matrix.toLinAlgEquiv stdBasis g
|
|
|
|
|
map_one' := (MulEquivClass.map_eq_one_iff (Matrix.toLinAlgEquiv stdBasis)).mpr rfl
|
|
|
|
|
map_mul' x y := by
|
|
|
|
|
simp only [lorentzGroupIsGroup_mul_coe, _root_.map_mul]
|
|
|
|
|
|
2024-11-08 06:07:18 +00:00
|
|
|
|
end ContrℝModule
|
|
|
|
|
|
|
|
|
|
/-- The module for covariant (up-index) complex Lorentz vectors. -/
|
|
|
|
|
structure CoℝModule (d : ℕ) where
|
|
|
|
|
/-- The underlying value as a vector `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
val : Fin 1 ⊕ Fin d → ℝ
|
|
|
|
|
|
|
|
|
|
namespace CoℝModule
|
|
|
|
|
|
|
|
|
|
variable {d : ℕ}
|
|
|
|
|
|
|
|
|
|
/-- The equivalence between `CoℝModule` and `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
def toFin1dℝFun : CoℝModule d ≃ (Fin 1 ⊕ Fin d → ℝ) where
|
|
|
|
|
toFun v := v.val
|
|
|
|
|
invFun f := ⟨f⟩
|
|
|
|
|
left_inv _ := rfl
|
|
|
|
|
right_inv _ := rfl
|
|
|
|
|
|
|
|
|
|
/-- The instance of `AddCommMonoid` on `CoℂModule` defined via its equivalence
|
|
|
|
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
instance : AddCommMonoid (CoℝModule d) := Equiv.addCommMonoid toFin1dℝFun
|
|
|
|
|
|
|
|
|
|
/-- The instance of `AddCommGroup` on `CoℝModule` defined via its equivalence
|
|
|
|
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
instance : AddCommGroup (CoℝModule d) := Equiv.addCommGroup toFin1dℝFun
|
|
|
|
|
|
|
|
|
|
/-- The instance of `Module` on `CoℝModule` defined via its equivalence
|
|
|
|
|
with `Fin 1 ⊕ Fin d → ℝ`. -/
|
|
|
|
|
instance : Module ℝ (CoℝModule d) := Equiv.module ℝ toFin1dℝFun
|
|
|
|
|
|
|
|
|
|
/-- The linear equivalence between `CoℝModule` and `(Fin 1 ⊕ Fin d → ℝ)`. -/
|
|
|
|
|
@[simps!]
|
2024-11-08 06:41:33 +00:00
|
|
|
|
def toFin1dℝEquiv : CoℝModule d ≃ₗ[ℝ] (Fin 1 ⊕ Fin d → ℝ) :=
|
|
|
|
|
Equiv.linearEquiv ℝ toFin1dℝFun
|
2024-11-08 06:07:18 +00:00
|
|
|
|
|
|
|
|
|
/-- The underlying element of `Fin 1 ⊕ Fin d → ℝ` of a element in `CoℝModule` defined
|
|
|
|
|
through the linear equivalence `toFin1dℝEquiv`. -/
|
2024-11-08 06:13:03 +00:00
|
|
|
|
abbrev toFin1dℝ (ψ : CoℝModule d) := toFin1dℝEquiv ψ
|
2024-11-08 06:07:18 +00:00
|
|
|
|
|
2024-11-08 06:41:33 +00:00
|
|
|
|
/-- The standard basis of `CoℝModule` indexed by `Fin 1 ⊕ Fin d`. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def stdBasis : Basis (Fin 1 ⊕ Fin d) ℝ (CoℝModule d) := Basis.ofEquivFun toFin1dℝEquiv
|
|
|
|
|
|
|
|
|
|
/-- The representation of the Lorentz group acting on `CoℝModule d`. -/
|
|
|
|
|
def rep : Representation ℝ (LorentzGroup d) (CoℝModule d) where
|
|
|
|
|
toFun g := Matrix.toLinAlgEquiv stdBasis (LorentzGroup.transpose g⁻¹)
|
|
|
|
|
map_one' := by
|
|
|
|
|
simp only [inv_one, LorentzGroup.transpose_one, lorentzGroupIsGroup_one_coe, _root_.map_one]
|
|
|
|
|
map_mul' x y := by
|
|
|
|
|
simp only [_root_.mul_inv_rev, lorentzGroupIsGroup_inv, LorentzGroup.transpose_mul,
|
|
|
|
|
lorentzGroupIsGroup_mul_coe, _root_.map_mul]
|
|
|
|
|
|
2024-11-08 06:07:18 +00:00
|
|
|
|
end CoℝModule
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
end Lorentz
|