2024-10-21 07:17:03 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.Tensors.Tree.Basic
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Commuting products
|
|
|
|
|
|
2024-10-21 08:02:29 +00:00
|
|
|
|
The results here follow from the properties of braided categories and braided functors.
|
2024-10-21 07:17:03 +00:00
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
open IndexNotation
|
|
|
|
|
open CategoryTheory
|
|
|
|
|
open MonoidalCategory
|
|
|
|
|
open OverColor
|
|
|
|
|
open HepLean.Fin
|
|
|
|
|
|
|
|
|
|
namespace TensorTree
|
|
|
|
|
|
2024-10-21 12:24:17 +00:00
|
|
|
|
variable {S : TensorSpecies} {n n2 : ℕ}
|
2024-10-21 07:17:03 +00:00
|
|
|
|
(c : Fin n → S.C) (c2 : Fin n2 → S.C)
|
|
|
|
|
|
2024-10-21 08:02:29 +00:00
|
|
|
|
/-- The permutation that arises when moving a commuting terms in a `prod` node.
|
|
|
|
|
This permutation is defined using braiding and composition with `finSumFinEquiv`
|
|
|
|
|
based-isomorphisms. -/
|
2024-10-21 07:17:03 +00:00
|
|
|
|
def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
|
|
|
|
|
OverColor.mk (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) :=
|
|
|
|
|
(equivToIso finSumFinEquiv).inv ≫
|
2024-10-21 08:02:29 +00:00
|
|
|
|
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
2024-10-21 07:17:03 +00:00
|
|
|
|
≫ (equivToIso finSumFinEquiv).hom
|
|
|
|
|
|
2024-10-21 08:02:29 +00:00
|
|
|
|
lemma finSumFinEquiv_comp_braidPerm :
|
|
|
|
|
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
|
|
|
|
|
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
|
|
|
|
≫ (equivToIso finSumFinEquiv).hom := by
|
|
|
|
|
rw [braidPerm]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
/-- The arguments of a `prod` node can be commuted using braiding. -/
|
2024-10-21 07:17:03 +00:00
|
|
|
|
theorem prod_comm (t : TensorTree S c) (t2 : TensorTree S c2) :
|
|
|
|
|
(prod t t2).tensor = (perm (braidPerm c c2) (prod t2 t)).tensor := by
|
2024-10-21 08:02:29 +00:00
|
|
|
|
rw [perm_tensor]
|
|
|
|
|
nth_rewrite 2 [prod_tensor]
|
|
|
|
|
change _ = (S.F.map (equivToIso finSumFinEquiv).hom ≫ S.F.map (braidPerm c c2)).hom
|
|
|
|
|
((S.F.μ (OverColor.mk c2) (OverColor.mk c)).hom (t2.tensor ⊗ₜ[S.k] t.tensor))
|
|
|
|
|
rw [← S.F.map_comp]
|
|
|
|
|
rw [finSumFinEquiv_comp_braidPerm]
|
|
|
|
|
rw [S.F.map_comp]
|
|
|
|
|
simp only [BraidedFunctor.braided, Category.assoc, Action.comp_hom,
|
|
|
|
|
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
|
|
|
|
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
|
|
|
|
ModuleCat.coe_comp, Function.comp_apply]
|
|
|
|
|
rw [prod_tensor]
|
|
|
|
|
apply congrArg
|
|
|
|
|
apply congrArg
|
|
|
|
|
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
|
|
|
|
((inv (lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom).hom
|
|
|
|
|
((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
|
|
|
|
|
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
|
|
|
|
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
|
|
|
|
lift.objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
|
|
|
|
|
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, IsIso.Iso.inv_hom]
|
|
|
|
|
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
|
|
|
|
(((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom ≫
|
|
|
|
|
(lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
|
|
|
|
|
simp only [Action.instMonoidalCategory_tensorObj_V, Iso.hom_inv_id, Action.id_hom,
|
|
|
|
|
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
|
|
|
|
Action.FunctorCategoryEquivalence.functor_obj_obj, lift.objObj'_V_carrier, mk_hom,
|
|
|
|
|
ModuleCat.id_apply]
|
|
|
|
|
rfl
|
2024-10-21 07:17:03 +00:00
|
|
|
|
|
|
|
|
|
end TensorTree
|