PhysLean/HepLean/SpaceTime/Basic.lean

91 lines
2.3 KiB
Text
Raw Normal View History

2024-05-14 08:25:03 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.VectorBundle.Basic
/-!
# Space time
This file introduce 4d Minkowski spacetime.
-/
noncomputable section
/-- The space-time -/
def spaceTime : Type := Fin 4 →
/-- Give spacetime the structure of an additive commutative monoid. -/
instance : AddCommMonoid spaceTime := Pi.addCommMonoid
/-- Give spacetime the structure of a module over the reals. -/
instance : Module spaceTime := Pi.module _ _ _
instance euclideanNormedAddCommGroup : NormedAddCommGroup spaceTime := Pi.normedAddCommGroup
instance euclideanNormedSpace : NormedSpace spaceTime := Pi.normedSpace
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The structure of a smooth manifold on spacetime. -/
def asSmoothManifold : ModelWithCorners spaceTime spaceTime := 𝓘(, spaceTime)
2024-05-14 08:27:14 -04:00
instance : ChartedSpace spaceTime spaceTime := chartedSpaceSelf spaceTime
2024-05-14 08:25:03 -04:00
/-- The standard basis for spacetime. -/
def stdBasis : Basis (Fin 4) spaceTime := Pi.basisFun (Fin 4)
lemma stdBasis_apply (μ ν : Fin 4) : stdBasis μ ν = if μ = ν then 1 else 0 := by
erw [stdBasis, Pi.basisFun_apply, LinearMap.stdBasis_apply']
lemma stdBasis_not_eq {μ ν : Fin 4} (h : μ ≠ ν) : stdBasis μ ν = 0 := by
rw [stdBasis_apply]
exact if_neg h
lemma stdBasis_0 : stdBasis 0 = ![1, 0, 0, 0] := by
funext i
fin_cases i
<;> simp [stdBasis_apply]
lemma stdBasis_1 : stdBasis 1 = ![0, 1, 0, 0] := by
funext i
fin_cases i
<;> simp [stdBasis_apply]
lemma stdBasis_2 : stdBasis 2 = ![0, 0, 1, 0] := by
funext i
fin_cases i
<;> simp [stdBasis_apply]
lemma stdBasis_3 : stdBasis 3 = ![0, 0, 0, 1] := by
funext i
fin_cases i
<;> simp [stdBasis_apply]
lemma stdBasis_mulVec (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ) :
(Λ *ᵥ stdBasis μ) ν = Λ ν μ := by
rw [mulVec, dotProduct, Fintype.sum_eq_single μ, stdBasis_apply]
2024-05-14 08:27:14 -04:00
simp only [↓reduceIte, mul_one]
2024-05-14 08:25:03 -04:00
intro x h
rw [stdBasis_apply, if_neg (Ne.symm h)]
simp
lemma explicit (x : spaceTime) : x = ![x 0, x 1, x 2, x 3] := by
funext i
fin_cases i <;> rfl
end spaceTime
end