PhysLean/HepLean/StandardModel/HiggsBoson/Basic.lean

202 lines
6.7 KiB
Text
Raw Normal View History

2024-05-09 15:09:14 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.Basic
import HepLean.StandardModel.HiggsBoson.TargetSpace
import Mathlib.Data.Complex.Exponential
import Mathlib.Tactic.Polyrith
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
import Mathlib.Geometry.Manifold.ContMDiff.Product
import Mathlib.Analysis.Complex.RealDeriv
import Mathlib.Algebra.QuadraticDiscriminant
/-!
# The Higgs field
This file defines the basic properties for the higgs field in the standard model.
## References
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
-/
universe v u
namespace StandardModel
noncomputable section
open Manifold
open Matrix
open Complex
open ComplexConjugate
2024-05-14 08:25:03 -04:00
open spaceTime
2024-05-09 15:09:14 -04:00
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
abbrev higgsBundle := Bundle.Trivial spaceTime higgsVec
2024-05-14 08:25:03 -04:00
instance : SmoothVectorBundle higgsVec higgsBundle spaceTime.asSmoothManifold :=
2024-05-09 15:09:14 -04:00
Bundle.Trivial.smoothVectorBundle higgsVec 𝓘(, spaceTime)
/-- A higgs field is a smooth section of the higgs bundle. -/
2024-05-14 08:25:03 -04:00
abbrev higgsField : Type := SmoothSection spaceTime.asSmoothManifold higgsVec higgsBundle
2024-05-09 15:09:14 -04:00
instance : NormedAddCommGroup (Fin 2 → ) := by
exact Pi.normedAddCommGroup
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
section. -/
noncomputable def higgsVec.toField (φ : higgsVec) : higgsField where
toFun := fun _ => φ
contMDiff_toFun := by
intro x
rw [Bundle.contMDiffAt_section]
exact smoothAt_const
namespace higgsField
open Complex Real
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, higgsVec) φ.toHiggsVec := by
intro x0
have h1 := φ.contMDiff x0
rw [Bundle.contMDiffAt_section] at h1
have h2 :
(fun x => ((trivializationAt higgsVec (Bundle.Trivial spaceTime higgsVec) x0)
{ proj := x, snd := φ x }).2) = φ := by
rfl
simp only [h2] at h1
exact h1
lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) :
(φ.toHiggsVec x).toField x = φ x := by
rfl
lemma higgsVecToFin2_toHiggsVec (φ : higgsField) : higgsVecToFin2 ∘ φ.toHiggsVec = φ := by
ext x
rfl
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, Fin 2 → ) φ := by
rw [← φ.higgsVecToFin2_toHiggsVec]
exact Smooth.comp smooth_higgsVecToFin2 (φ.toHiggsVec_smooth)
lemma apply_smooth (φ : higgsField) :
∀ i, Smooth 𝓘(, spaceTime) 𝓘(, ) (fun (x : spaceTime) => (φ x i)) := by
rw [← smooth_pi_space]
exact φ.toVec_smooth
lemma apply_re_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.apply_smooth i)
lemma apply_im_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.apply_smooth i)
/-- Given a `higgsField`, the map `spaceTime → ` obtained by taking the square norm of the
higgs vector. -/
@[simp]
def normSq (φ : higgsField) : spaceTime → := fun x => ( ‖φ x‖ ^ 2)
lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) :
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
lemma normSq_expand (φ : higgsField) :
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
funext x
simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
rw [@norm_sq_eq_inner ]
simp
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, ) φ.normSq := by
rw [normSq_expand]
refine Smooth.add ?_ ?_
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_
exact φ.apply_re_smooth 0
exact φ.apply_re_smooth 0
refine Smooth.smul ?_ ?_
exact φ.apply_im_smooth 0
exact φ.apply_im_smooth 0
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_
exact φ.apply_re_smooth 1
exact φ.apply_re_smooth 1
refine Smooth.smul ?_ ?_
exact φ.apply_im_smooth 1
exact φ.apply_im_smooth 1
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
@[simp]
def potential (φ : higgsField) (μSq lambda : ) (x : spaceTime) : :=
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
lemma potential_smooth (φ : higgsField) (μSq lambda : ) :
Smooth 𝓘(, spaceTime) 𝓘(, ) (fun x => φ.potential μSq lambda x) := by
simp only [potential, normSq, neg_mul]
exact Smooth.add
(Smooth.neg (Smooth.smul smooth_const φ.normSq_smooth))
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
lemma potential_apply (φ : higgsField) (μSq lambda : ) (x : spaceTime) :
(φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by
simp [higgsVec.potential, toHiggsVec_norm]
ring
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by
intro x _
simp [higgsVec.toField]
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField := by
apply Iff.intro
intro h
use Φ 0
ext x y
rw [← h x 0]
rfl
intro h
intro x y
obtain ⟨φ, hφ⟩ := h
subst hφ
rfl
lemma normSq_of_higgsVec (φ : higgsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
simp only [normSq, higgsVec.toField]
funext x
simp
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ) :
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
simp [higgsVec.potential]
unfold potential
rw [normSq_of_higgsVec]
funext x
simp only [neg_mul, add_right_inj]
ring_nf
end higgsField
end
end StandardModel