2024-04-17 16:23:40 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.AnomalyCancellation.MSSMNu.Basic
|
|
|
|
|
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
|
|
|
|
|
import HepLean.AnomalyCancellation.MSSMNu.PlaneY3B3Orthog
|
|
|
|
|
import Mathlib.Tactic.Polyrith
|
|
|
|
|
/-!
|
|
|
|
|
# Parameterization of solutions to the MSSM anomaly cancellation equations
|
|
|
|
|
|
|
|
|
|
This file uses planes through $Y_3$ and $B_3$ to form solutions to the anomaly cancellation
|
|
|
|
|
conditions.
|
|
|
|
|
|
|
|
|
|
Split into four cases:
|
|
|
|
|
- The generic case.
|
|
|
|
|
- `case₁`: The case when the quadratic and cubic lines agree (if they exist uniquely).
|
|
|
|
|
- `case₂`: The case where the plane lies entirely within the quadratic.
|
|
|
|
|
- `case₃`: The case where the plane lies entirely within the cubic and quadratic.
|
|
|
|
|
|
|
|
|
|
# References
|
|
|
|
|
|
|
|
|
|
The main reference for the material in this file is:
|
|
|
|
|
|
|
|
|
|
- https://arxiv.org/pdf/2107.07926.pdf
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
universe v u
|
|
|
|
|
|
|
|
|
|
namespace MSSMACC
|
|
|
|
|
open MSSMCharges
|
|
|
|
|
open MSSMACCs
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
namespace AnomalyFreePerp
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def lineEqProp (R : MSSMACC.AnomalyFreePerp) : Prop :=
|
|
|
|
|
α₁ R = 0 ∧ α₂ R = 0 ∧ α₃ R = 0
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (lineEqProp R) := by
|
|
|
|
|
apply And.decidable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def lineEqPropSol (R : MSSMACC.Sols) : Prop :=
|
|
|
|
|
cubeTriLin (R.val, R.val, Y₃.val) * quadBiLin (B₃.val, R.val) -
|
|
|
|
|
cubeTriLin (R.val, R.val, B₃.val) * quadBiLin (Y₃.val, R.val) = 0
|
|
|
|
|
|
|
|
|
|
def lineEqCoeff (T : MSSMACC.Sols) : ℚ := dot (Y₃.val, B₃.val) * α₃ (proj T.1.1)
|
|
|
|
|
|
|
|
|
|
lemma lineEqPropSol_iff_lineEqCoeff_zero (T : MSSMACC.Sols) :
|
|
|
|
|
lineEqPropSol T ↔ lineEqCoeff T = 0 := by
|
|
|
|
|
rw [lineEqPropSol, lineEqCoeff, α₃]
|
|
|
|
|
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero,
|
|
|
|
|
false_or]
|
|
|
|
|
rw [cube_proj_proj_B₃, cube_proj_proj_Y₃, quad_B₃_proj, quad_Y₃_proj]
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
|
|
|
|
|
simp only [Fin.isValue, Fin.reduceFinMk, OfNat.ofNat_ne_zero, false_or]
|
|
|
|
|
have h1 : 108 ^ 2 * cubeTriLin (T.val, T.val, Y₃.val) * (108 * quadBiLin (B₃.val, T.val)) -
|
|
|
|
|
108 ^ 2 * cubeTriLin (T.val, T.val, B₃.val) * (108 * quadBiLin (Y₃.val, T.val)) =
|
|
|
|
|
108 ^ 3 * (cubeTriLin (T.val, T.val, Y₃.val) * quadBiLin (B₃.val, T.val) -
|
|
|
|
|
cubeTriLin (T.val, T.val, B₃.val) * quadBiLin (Y₃.val, T.val) ) := by
|
|
|
|
|
ring
|
|
|
|
|
rw [h1]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
lemma linEqPropSol_iff_proj_linEqProp (R : MSSMACC.Sols) :
|
|
|
|
|
lineEqPropSol R ↔ lineEqProp (proj R.1.1) := by
|
|
|
|
|
rw [lineEqPropSol_iff_lineEqCoeff_zero, lineEqCoeff, lineEqProp]
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
intro h
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h
|
|
|
|
|
simp at h
|
|
|
|
|
rw [α₁_proj, α₂_proj, h]
|
|
|
|
|
simp
|
|
|
|
|
intro h
|
|
|
|
|
rw [h.2.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-- Case₂ is defined when the plane lies entirely within the quadratic. -/
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadProp (R : MSSMACC.AnomalyFreePerp) : Prop :=
|
2024-04-17 16:23:40 -04:00
|
|
|
|
quadBiLin (R.val, R.val) = 0 ∧ quadBiLin (Y₃.val, R.val) = 0 ∧ quadBiLin (B₃.val, R.val) = 0
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (inQuadProp R) := by
|
|
|
|
|
apply And.decidable
|
|
|
|
|
|
|
|
|
|
def inQuadSolProp (R : MSSMACC.Sols) : Prop :=
|
|
|
|
|
quadBiLin (Y₃.val, R.val) = 0 ∧ quadBiLin (B₃.val, R.val) = 0
|
|
|
|
|
|
|
|
|
|
/-- The coefficent which multiplies a solution on passing through `case₁`. -/
|
|
|
|
|
def quadCoeff (T : MSSMACC.Sols) : ℚ :=
|
|
|
|
|
2 * dot (Y₃.val, B₃.val) ^ 2 *
|
|
|
|
|
(quadBiLin (Y₃.val, T.val) ^ 2 + quadBiLin (B₃.val, T.val) ^ 2)
|
|
|
|
|
|
|
|
|
|
lemma inQuadSolProp_iff_quadCoeff_zero (T : MSSMACC.Sols) : inQuadSolProp T ↔ quadCoeff T = 0 := by
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
intro h
|
|
|
|
|
rw [quadCoeff, h.1, h.2]
|
|
|
|
|
simp
|
|
|
|
|
intro h
|
|
|
|
|
rw [quadCoeff] at h
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h
|
|
|
|
|
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
|
|
|
|
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
|
|
|
|
|
apply (add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp at h
|
|
|
|
|
simp only [Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
|
|
|
|
|
not_false_eq_true, pow_eq_zero_iff] at h
|
|
|
|
|
exact h
|
|
|
|
|
|
|
|
|
|
lemma inQuadSolProp_iff_proj_inQuadProp (R : MSSMACC.Sols) :
|
|
|
|
|
inQuadSolProp R ↔ inQuadProp (proj R.1.1) := by
|
|
|
|
|
rw [inQuadSolProp, inQuadProp]
|
|
|
|
|
rw [quad_proj, quad_Y₃_proj, quad_B₃_proj]
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
intro h
|
|
|
|
|
rw [h.1, h.2]
|
|
|
|
|
simp
|
|
|
|
|
intro h
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h
|
|
|
|
|
simp only [dot_toFun, Fin.isValue, Fin.reduceFinMk , mul_eq_zero,
|
|
|
|
|
OfNat.ofNat_ne_zero, or_self, false_or] at h
|
|
|
|
|
rw [h.2.1, h.2.2]
|
|
|
|
|
simp
|
|
|
|
|
|
2024-04-17 16:23:40 -04:00
|
|
|
|
/-- Case₃ is defined when the plane lies entirely within the quadratic and cubic. -/
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inCubeProp (R : MSSMACC.AnomalyFreePerp) : Prop :=
|
2024-04-17 16:23:40 -04:00
|
|
|
|
cubeTriLin (R.val, R.val, R.val) = 0 ∧ cubeTriLin (R.val, R.val, B₃.val) = 0 ∧
|
|
|
|
|
cubeTriLin (R.val, R.val, Y₃.val) = 0
|
|
|
|
|
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (inCubeProp R) := by
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply And.decidable
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inCubeSolProp (R : MSSMACC.Sols) : Prop :=
|
|
|
|
|
cubeTriLin (R.val, R.val, B₃.val) = 0 ∧ cubeTriLin (R.val, R.val, Y₃.val) = 0
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def cubicCoeff (T : MSSMACC.Sols) : ℚ :=
|
|
|
|
|
3 * dot (Y₃.val, B₃.val) ^ 3 * (cubeTriLin (T.val, T.val, Y₃.val) ^ 2 +
|
|
|
|
|
cubeTriLin (T.val, T.val, B₃.val) ^ 2 )
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inCubeSolProp_iff_cubicCoeff_zero (T : MSSMACC.Sols) :
|
|
|
|
|
inCubeSolProp T ↔ cubicCoeff T = 0 := by
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
intro h
|
|
|
|
|
rw [cubicCoeff, h.1, h.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp
|
2024-04-19 16:10:29 -04:00
|
|
|
|
intro h
|
|
|
|
|
rw [cubicCoeff] at h
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h
|
|
|
|
|
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
|
|
|
|
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
|
|
|
|
|
apply (add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp at h
|
|
|
|
|
simp only [Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
|
|
|
|
|
not_false_eq_true, pow_eq_zero_iff] at h
|
|
|
|
|
exact h.symm
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inCubeSolProp_iff_proj_inCubeProp (R : MSSMACC.Sols) :
|
|
|
|
|
inCubeSolProp R ↔ inCubeProp (proj R.1.1) := by
|
|
|
|
|
rw [inCubeSolProp, inCubeProp]
|
|
|
|
|
rw [cube_proj, cube_proj_proj_Y₃, cube_proj_proj_B₃]
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
intro h
|
|
|
|
|
rw [h.1, h.2]
|
|
|
|
|
simp
|
|
|
|
|
intro h
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h
|
|
|
|
|
simp only [dot_toFun, Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
|
|
|
|
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
|
|
|
|
|
rw [h.2.1, h.2.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
/-- Given a `R ∈ LinSols` perpendicular to $Y_3$, and $B_3$, a solution to the quadratic. -/
|
|
|
|
|
def toSolNSQuad (R : MSSMACC.AnomalyFreePerp) : MSSMACC.QuadSols :=
|
|
|
|
|
lineQuad R
|
|
|
|
|
(3 * cubeTriLin (R.val, R.val, Y₃.val))
|
|
|
|
|
(3 * cubeTriLin (R.val, R.val, B₃.val))
|
|
|
|
|
(cubeTriLin (R.val, R.val, R.val))
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma toSolNSQuad_cube (R : MSSMACC.AnomalyFreePerp) :
|
|
|
|
|
accCube (toSolNSQuad R).val = 0 := by
|
|
|
|
|
rw [toSolNSQuad]
|
|
|
|
|
rw [lineQuad_val]
|
|
|
|
|
rw [planeY₃B₃_cubic]
|
|
|
|
|
ring
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma toSolNSQuad_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
|
|
|
|
|
(toSolNSQuad R).1 = planeY₃B₃ R (α₁ R) (α₂ R) (α₃ R) := by
|
|
|
|
|
change (planeY₃B₃ _ _ _ _) = _
|
|
|
|
|
apply planeY₃B₃_eq
|
|
|
|
|
rw [α₁, α₂, α₃]
|
|
|
|
|
ring_nf
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
/-- Given a `R ∈ LinSols` perpendicular to $Y_3$, and $B_3$, a element of `Sols`. -/
|
|
|
|
|
def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _ , _) =>
|
|
|
|
|
a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def toSolNSProj (T : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ :=
|
|
|
|
|
(proj T.1.1, (lineEqCoeff T)⁻¹, 0, 0)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma toSolNS_proj (T : MSSMACC.Sols) (h : lineEqCoeff T ≠ 0) :
|
|
|
|
|
toSolNS (toSolNSProj T) = T := by
|
|
|
|
|
apply ACCSystem.Sols.ext
|
|
|
|
|
rw [toSolNS, toSolNSProj]
|
|
|
|
|
change (lineEqCoeff T)⁻¹ • (toSolNSQuad _).1.1 = _
|
|
|
|
|
rw [toSolNSQuad_eq_planeY₃B₃_on_α]
|
|
|
|
|
rw [planeY₃B₃_val]
|
|
|
|
|
rw [Y₃_plus_B₃_plus_proj]
|
|
|
|
|
rw [α₁_proj, α₂_proj]
|
|
|
|
|
ring_nf
|
|
|
|
|
simp only [zero_smul, add_zero, Fin.isValue, Fin.reduceFinMk, zero_add]
|
|
|
|
|
have h1 : α₃ (proj T.toLinSols) * dot (Y₃.val, B₃.val) = lineEqCoeff T := by
|
|
|
|
|
rw [lineEqCoeff]
|
|
|
|
|
ring
|
|
|
|
|
rw [h1]
|
|
|
|
|
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h]
|
|
|
|
|
simp
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inLineEq : Type := {R : MSSMACC.AnomalyFreePerp // lineEqProp R}
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inLineEqSol : Type := {R : MSSMACC.Sols // lineEqPropSol R}
|
|
|
|
|
|
|
|
|
|
def inLineEqProj (T : inLineEqSol) : inLineEq × ℚ × ℚ × ℚ :=
|
|
|
|
|
(⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop ⟩,
|
|
|
|
|
(quadCoeff T.val)⁻¹ * quadBiLin (B₃.val, T.val.val),
|
|
|
|
|
(quadCoeff T.val)⁻¹ * (- quadBiLin (Y₃.val, T.val.val)),
|
|
|
|
|
(quadCoeff T.val)⁻¹ * (- quadBiLin (B₃.val, T.val.val) * ( dot (Y₃.val, T.val.val)
|
|
|
|
|
- dot (B₃.val, T.val.val))
|
|
|
|
|
- quadBiLin (Y₃.val, T.val.val) * ( dot (Y₃.val, T.val.val) - 2 * dot (B₃.val, T.val.val))))
|
|
|
|
|
|
|
|
|
|
def inLineEqToSol : inLineEq × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, c₁, c₂, c₃) =>
|
|
|
|
|
AnomalyFreeMk'' (lineQuad R.val c₁ c₂ c₃)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
(by
|
|
|
|
|
rw [lineQuad_cube]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
rw [R.prop.1, R.prop.2.1, R.prop.2.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp)
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inLineEqTo_smul (R : inLineEq) (c₁ c₂ c₃ d : ℚ) :
|
|
|
|
|
inLineEqToSol (R, (d * c₁), (d * c₂), (d * c₃)) = d • inLineEqToSol (R, c₁, c₂, c₃) := by
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply ACCSystem.Sols.ext
|
|
|
|
|
change (lineQuad _ _ _ _).val = _
|
|
|
|
|
rw [lineQuad_smul]
|
|
|
|
|
rfl
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inLineEqToSol_proj (T : inLineEqSol) (h : quadCoeff T.val ≠ 0) :
|
|
|
|
|
inLineEqToSol (inLineEqProj T) = T.val := by
|
|
|
|
|
rw [inLineEqProj, inLineEqTo_smul]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply ACCSystem.Sols.ext
|
2024-04-19 16:10:29 -04:00
|
|
|
|
change _ • (lineQuad _ _ _ _).val = _
|
2024-04-17 16:23:40 -04:00
|
|
|
|
rw [lineQuad_val]
|
|
|
|
|
rw [planeY₃B₃_val]
|
|
|
|
|
rw [Y₃_plus_B₃_plus_proj]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
rw [quad_proj, quad_Y₃_proj, quad_B₃_proj]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
ring_nf
|
2024-04-19 16:10:29 -04:00
|
|
|
|
simp only [zero_smul, add_zero, Fin.isValue, Fin.reduceFinMk, zero_add]
|
|
|
|
|
have h1 : (quadBiLin (Y₃.val, (T).val.val) ^ 2 * dot (Y₃.val, B₃.val) ^ 2 * 2 +
|
|
|
|
|
dot (Y₃.val, B₃.val) ^ 2 * quadBiLin (B₃.val, (T).val.val) ^ 2 * 2) = quadCoeff T.val := by
|
|
|
|
|
rw [quadCoeff]
|
|
|
|
|
ring
|
|
|
|
|
rw [h1]
|
|
|
|
|
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuad : Type := {R : inLineEq // inQuadProp R.val}
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadSol : Type := {R : inLineEqSol // inQuadSolProp R.val}
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadToSol : inQuad × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a₁, a₂, a₃) =>
|
|
|
|
|
AnomalyFreeMk' (lineCube R.val.val a₁ a₂ a₃)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
(by
|
|
|
|
|
erw [planeY₃B₃_quad]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
rw [R.prop.1, R.prop.2.1, R.prop.2.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp)
|
2024-04-19 16:10:29 -04:00
|
|
|
|
(lineCube_cube R.val.val a₁ a₂ a₃)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inQuadToSol_smul (R : inQuad) (c₁ c₂ c₃ d : ℚ) :
|
|
|
|
|
inQuadToSol (R, (d * c₁), (d * c₂), (d * c₃)) = d • inQuadToSol (R, c₁, c₂, c₃) := by
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply ACCSystem.Sols.ext
|
|
|
|
|
change (lineCube _ _ _ _).val = _
|
|
|
|
|
rw [lineCube_smul]
|
|
|
|
|
rfl
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadProj (T : inQuadSol) : inQuad × ℚ × ℚ × ℚ :=
|
|
|
|
|
(⟨⟨proj T.val.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val.val).mp T.val.prop ⟩,
|
|
|
|
|
(inQuadSolProp_iff_proj_inQuadProp T.val.val).mp T.prop⟩,
|
|
|
|
|
(cubicCoeff T.val.val)⁻¹ * (cubeTriLin (T.val.val.val, T.val.val.val, B₃.val)),
|
|
|
|
|
(cubicCoeff T.val.val)⁻¹ * (- cubeTriLin (T.val.val.val, T.val.val.val, Y₃.val)),
|
|
|
|
|
(cubicCoeff T.val.val)⁻¹ * (- cubeTriLin (T.val.val.val, T.val.val.val, B₃.val)
|
|
|
|
|
* (dot (Y₃.val, T.val.val.val) - dot (B₃.val, T.val.val.val))
|
|
|
|
|
- cubeTriLin (T.val.val.val, T.val.val.val, Y₃.val)
|
|
|
|
|
* (dot (Y₃.val, T.val.val.val) - 2 * dot (B₃.val, T.val.val.val))))
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inQuadToSol_proj (T : inQuadSol) (h : cubicCoeff T.val.val ≠ 0) :
|
|
|
|
|
inQuadToSol (inQuadProj T) = T.val.val := by
|
|
|
|
|
rw [inQuadProj, inQuadToSol_smul]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply ACCSystem.Sols.ext
|
2024-04-19 16:10:29 -04:00
|
|
|
|
change _ • (planeY₃B₃ _ _ _ _).val = _
|
2024-04-17 16:23:40 -04:00
|
|
|
|
rw [planeY₃B₃_val]
|
|
|
|
|
rw [Y₃_plus_B₃_plus_proj]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
rw [cube_proj, cube_proj_proj_B₃, cube_proj_proj_Y₃]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
ring_nf
|
2024-04-19 16:10:29 -04:00
|
|
|
|
simp only [zero_smul, add_zero, Fin.isValue, Fin.reduceFinMk, zero_add]
|
|
|
|
|
have h1 : (cubeTriLin (T.val.val.val, T.val.val.val, Y₃.val) ^ 2 * dot (Y₃.val, B₃.val) ^ 3 * 3 +
|
|
|
|
|
dot (Y₃.val, B₃.val) ^ 3 * cubeTriLin (T.val.val.val, T.val.val.val, B₃.val) ^ 2
|
|
|
|
|
* 3) = cubicCoeff T.val.val := by
|
|
|
|
|
rw [cubicCoeff]
|
|
|
|
|
ring
|
|
|
|
|
rw [h1]
|
|
|
|
|
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel h]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadCube : Type := {R : inQuad // inCubeProp R.val.val}
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadCubeSol : Type := {R : inQuadSol // inCubeSolProp R.val.val}
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
|
|
|
|
/-- The case where the plane lies entirely within the quadratic and cubic. -/
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadCubeToSol : inQuadCube × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, b₁, b₂, b₃) =>
|
|
|
|
|
AnomalyFreeMk' (planeY₃B₃ R.val.val.val b₁ b₂ b₃)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
(by
|
|
|
|
|
rw [planeY₃B₃_quad]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
rw [R.val.prop.1, R.val.prop.2.1, R.val.prop.2.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp)
|
|
|
|
|
(by
|
|
|
|
|
rw [planeY₃B₃_cubic]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
rw [R.prop.1, R.prop.2.1, R.prop.2.2]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp)
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inQuadCubeToSol_smul (R : inQuadCube) (c₁ c₂ c₃ d : ℚ) :
|
|
|
|
|
inQuadCubeToSol (R, (d * c₁), (d * c₂), (d * c₃)) = d • inQuadCubeToSol (R, c₁, c₂, c₃):= by
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply ACCSystem.Sols.ext
|
|
|
|
|
change (planeY₃B₃ _ _ _ _).val = _
|
|
|
|
|
rw [planeY₃B₃_smul]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def inQuadCubeProj (T : inQuadCubeSol) : inQuadCube × ℚ × ℚ × ℚ :=
|
|
|
|
|
(⟨⟨⟨proj T.val.val.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val.val.val).mp T.val.val.prop ⟩,
|
|
|
|
|
(inQuadSolProp_iff_proj_inQuadProp T.val.val.val).mp T.val.prop⟩,
|
|
|
|
|
(inCubeSolProp_iff_proj_inCubeProp T.val.val.val).mp T.prop⟩,
|
|
|
|
|
(dot (Y₃.val, B₃.val)) ⁻¹ * (dot (Y₃.val, T.val.val.val.val) - dot (B₃.val, T.val.val.val.val)),
|
|
|
|
|
(dot (Y₃.val, B₃.val)) ⁻¹ * (2 * dot (B₃.val, T.val.val.val.val) -
|
|
|
|
|
dot (Y₃.val, T.val.val.val.val)), (dot (Y₃.val, B₃.val)) ⁻¹ * 1)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma inQuadCubeToSol_proj (T : inQuadCubeSol) :
|
|
|
|
|
inQuadCubeToSol (inQuadCubeProj T) = T.val.val.val := by
|
|
|
|
|
rw [inQuadCubeProj, inQuadCubeToSol_smul]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
apply ACCSystem.Sols.ext
|
2024-04-19 16:10:29 -04:00
|
|
|
|
change _ • (planeY₃B₃ _ _ _ _).val = _
|
2024-04-17 16:23:40 -04:00
|
|
|
|
rw [planeY₃B₃_val]
|
|
|
|
|
rw [Y₃_plus_B₃_plus_proj]
|
|
|
|
|
ring_nf
|
2024-04-19 16:10:29 -04:00
|
|
|
|
simp only [Fin.isValue, Fin.reduceFinMk, zero_smul, add_zero, zero_add]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel]
|
|
|
|
|
simp only [one_smul]
|
|
|
|
|
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
|
2024-04-19 16:10:29 -04:00
|
|
|
|
simp
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
def toSol :
|
|
|
|
|
MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, b, c) =>
|
|
|
|
|
if h₃ : lineEqProp R ∧ inQuadProp R ∧ inCubeProp R then
|
|
|
|
|
inQuadCubeToSol (⟨⟨⟨R, h₃.1⟩, h₃.2.1⟩, h₃.2.2⟩, a, b, c)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
else
|
2024-04-19 16:10:29 -04:00
|
|
|
|
if h₂ : lineEqProp R ∧ inQuadProp R then
|
|
|
|
|
inQuadToSol (⟨⟨R, h₂.1⟩, h₂.2⟩, a, b, c)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
else
|
2024-04-19 16:10:29 -04:00
|
|
|
|
if h₁ : lineEqProp R then
|
|
|
|
|
inLineEqToSol (⟨R, h₁⟩, a, b, c)
|
2024-04-17 16:23:40 -04:00
|
|
|
|
else
|
2024-04-19 16:10:29 -04:00
|
|
|
|
toSolNS ⟨R, a, b, c⟩
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
lemma toSol_toSolNSProj (T : MSSMACC.Sols) (h₁ : ¬ lineEqPropSol T) :
|
|
|
|
|
toSol (toSolNSProj T) = T := by
|
|
|
|
|
have h1 : ¬ lineEqProp (toSolNSProj T).1 := (linEqPropSol_iff_proj_linEqProp T).mpr.mt h₁
|
|
|
|
|
rw [toSol]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp_all
|
2024-04-19 16:10:29 -04:00
|
|
|
|
exact toSolNS_proj T (mt (lineEqPropSol_iff_lineEqCoeff_zero T).mpr h₁)
|
|
|
|
|
|
|
|
|
|
lemma toSol_inLineEq (T : MSSMACC.Sols) (h₁ : lineEqPropSol T) (h₂ : ¬ inQuadSolProp T) :
|
|
|
|
|
∃ X, toSol X = T := by
|
|
|
|
|
let X := inLineEqProj ⟨T, h₁⟩
|
|
|
|
|
use ⟨X.1.val, X.2.1, X.2.2⟩
|
|
|
|
|
have ha₁ : ¬ inQuadProp X.1.val := (inQuadSolProp_iff_proj_inQuadProp T).mpr.mt h₂
|
|
|
|
|
have ha₂ : lineEqProp X.1.val := (linEqPropSol_iff_proj_linEqProp T).mp h₁
|
|
|
|
|
rw [toSol]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp_all
|
2024-04-19 16:10:29 -04:00
|
|
|
|
exact inLineEqToSol_proj ⟨T, h₁⟩ (mt (inQuadSolProp_iff_quadCoeff_zero T).mpr h₂)
|
|
|
|
|
|
|
|
|
|
lemma toSol_inQuad (T : MSSMACC.Sols) (h₁ : lineEqPropSol T) (h₂ : inQuadSolProp T)
|
|
|
|
|
(h₃ : ¬ inCubeSolProp T) : ∃ X, toSol X = T := by
|
|
|
|
|
let X := inQuadProj ⟨⟨T, h₁⟩, h₂⟩
|
|
|
|
|
use ⟨X.1.val.val, X.2.1, X.2.2⟩
|
|
|
|
|
have ha₁ : ¬ inCubeProp X.1.val.val := (inCubeSolProp_iff_proj_inCubeProp T).mpr.mt h₃
|
|
|
|
|
have ha₂ : inQuadProp X.1.val.val := (inQuadSolProp_iff_proj_inQuadProp T).mp h₂
|
|
|
|
|
have ha₃ : lineEqProp X.1.val.val := (linEqPropSol_iff_proj_linEqProp T).mp h₁
|
|
|
|
|
rw [toSol]
|
2024-04-17 16:23:40 -04:00
|
|
|
|
simp_all
|
2024-04-19 16:10:29 -04:00
|
|
|
|
exact inQuadToSol_proj ⟨⟨T, h₁⟩, h₂⟩ (mt (inCubeSolProp_iff_cubicCoeff_zero T).mpr h₃)
|
|
|
|
|
|
|
|
|
|
lemma toSol_inQuadCube (T : MSSMACC.Sols) (h₁ : lineEqPropSol T) (h₂ : inQuadSolProp T)
|
|
|
|
|
(h₃ : inCubeSolProp T) : ∃ X, toSol X = T := by
|
|
|
|
|
let X := inQuadCubeProj ⟨⟨⟨T, h₁⟩, h₂⟩, h₃⟩
|
|
|
|
|
use ⟨X.1.val.val.val, X.2.1, X.2.2⟩
|
|
|
|
|
have ha₁ : inCubeProp X.1.val.val.val := (inCubeSolProp_iff_proj_inCubeProp T).mp h₃
|
|
|
|
|
have ha₂ : inQuadProp X.1.val.val.val := (inQuadSolProp_iff_proj_inQuadProp T).mp h₂
|
|
|
|
|
have ha₃ : lineEqProp X.1.val.val.val := (linEqPropSol_iff_proj_linEqProp T).mp h₁
|
|
|
|
|
rw [toSol]
|
|
|
|
|
simp_all
|
|
|
|
|
exact inQuadCubeToSol_proj ⟨⟨⟨T, h₁⟩, h₂⟩, h₃⟩
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
2024-04-19 16:10:29 -04:00
|
|
|
|
theorem toSol_surjective : Function.Surjective toSol := by
|
2024-04-17 16:23:40 -04:00
|
|
|
|
intro T
|
2024-04-19 16:10:29 -04:00
|
|
|
|
by_cases h₁ : ¬ lineEqPropSol T
|
|
|
|
|
use toSolNSProj T
|
|
|
|
|
exact toSol_toSolNSProj T h₁
|
|
|
|
|
simp at h₁
|
|
|
|
|
by_cases h₂ : ¬ inQuadSolProp T
|
|
|
|
|
exact toSol_inLineEq T h₁ h₂
|
|
|
|
|
simp at h₂
|
|
|
|
|
by_cases h₃ : ¬ inCubeSolProp T
|
|
|
|
|
exact toSol_inQuad T h₁ h₂ h₃
|
|
|
|
|
simp at h₃
|
|
|
|
|
exact toSol_inQuadCube T h₁ h₂ h₃
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end AnomalyFreePerp
|
2024-04-17 16:23:40 -04:00
|
|
|
|
|
|
|
|
|
end MSSMACC
|