PhysLean/HepLean/Lorentz/MinkowskiMatrix.lean

151 lines
4.9 KiB
Text
Raw Normal View History

2024-11-08 11:22:39 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Analysis.InnerProductSpace.PiL2
2024-11-08 11:22:39 +00:00
import Mathlib.Algebra.Lie.Classical
/-!
# The Minkowski matrix
-/
open Matrix
open InnerProductSpace
/-!
# The definition of the Minkowski Matrix
-/
/-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/
def minkowskiMatrix {d : } : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) :=
LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d)
namespace minkowskiMatrix
variable {d : }
/-- Notation for `minkowskiMatrix`. -/
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
@[simp]
lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_mul_diagonal]
ext1 i j
rcases i with i | i <;> rcases j with j | j
· simp only [diagonal, of_apply, Sum.inl.injEq, Sum.elim_inl, mul_one]
split
· rename_i h
subst h
simp_all only [one_apply_eq]
· simp_all only [ne_eq, Sum.inl.injEq, not_false_eq_true, one_apply_ne]
· rfl
· rfl
· simp only [diagonal, of_apply, Sum.inr.injEq, Sum.elim_inr, mul_neg, mul_one, neg_neg]
split
· rename_i h
subst h
simp_all only [one_apply_eq]
· simp_all only [ne_eq, Sum.inr.injEq, not_false_eq_true, one_apply_ne]
@[simp]
lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose]
@[simp]
lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
@[simp]
lemma η_apply_mul_η_apply_diag (μ : Fin 1 ⊕ Fin d) : η μ μ * η μ μ = 1 := by
match μ with
| Sum.inl _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
| Sum.inr _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
lemma as_block : @minkowskiMatrix d =
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ) 0 0 (-1 : Matrix (Fin d) (Fin d) ) := by
rw [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, ← fromBlocks_diagonal]
refine fromBlocks_inj.mpr ?_
simp only [diagonal_one, true_and]
funext i j
rw [← diagonal_neg]
rfl
@[simp]
lemma off_diag_zero {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν) : η μ ν = 0 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
exact diagonal_apply_ne _ h
lemma inl_0_inl_0 : @minkowskiMatrix d (Sum.inl 0) (Sum.inl 0) = 1 := by
rfl
lemma inr_i_inr_i (i : Fin d) : @minkowskiMatrix d (Sum.inr i) (Sum.inr i) = -1 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
simp_all only [diagonal_apply_eq, Sum.elim_inr]
2024-11-08 13:20:00 +00:00
@[simp]
lemma mulVec_inl_0 (v : (Fin 1 ⊕ Fin d) → ) :
(η *ᵥ v) (Sum.inl 0)= v (Sum.inl 0) := by
simp only [mulVec, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal]
simp only [Fin.isValue, diagonal_dotProduct, Sum.elim_inl, one_mul]
@[simp]
lemma mulVec_inr_i (v : (Fin 1 ⊕ Fin d) → ) (i : Fin d) :
(η *ᵥ v) (Sum.inr i)= - v (Sum.inr i) := by
simp only [mulVec, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal]
simp only [diagonal_dotProduct, Sum.elim_inr, neg_mul, one_mul]
2024-11-08 11:22:39 +00:00
variable (Λ Λ' : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) )
/-- The dual of a matrix with respect to the Minkowski metric. -/
def dual : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) := η * Λᵀ * η
@[simp]
lemma dual_id : @dual d 1 = 1 := by
simpa only [dual, transpose_one, mul_one] using minkowskiMatrix.sq
@[simp]
lemma dual_mul : dual (Λ * Λ') = dual Λ' * dual Λ := by
simp only [dual, transpose_mul]
trans η * Λ'ᵀ * (η * η) * Λᵀ * η
· noncomm_ring [minkowskiMatrix.sq]
· noncomm_ring
@[simp]
lemma dual_dual : dual (dual Λ) = Λ := by
simp only [dual, transpose_mul, transpose_transpose, eq_transpose]
trans (η * η) * Λ * (η * η)
· noncomm_ring
· noncomm_ring [minkowskiMatrix.sq]
@[simp]
lemma dual_eta : @dual d η = η := by
simp only [dual, eq_transpose]
noncomm_ring [minkowskiMatrix.sq]
@[simp]
lemma dual_transpose : dual Λᵀ = (dual Λ)ᵀ := by
simp only [dual, transpose_transpose, transpose_mul, eq_transpose]
noncomm_ring
@[simp]
lemma det_dual : (dual Λ).det = Λ.det := by
simp only [dual, det_mul, minkowskiMatrix.det_eq_neg_one_pow_d, det_transpose]
group
norm_cast
simp
lemma dual_apply (μ ν : Fin 1 ⊕ Fin d) :
dual Λ μ ν = η μ μ * Λ ν μ * η ν ν := by
simp only [dual, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
diagonal_mul, transpose_apply, diagonal_apply_eq]
lemma dual_apply_minkowskiMatrix (μ ν : Fin 1 ⊕ Fin d) :
dual Λ μ ν * η ν ν = η μ μ * Λ ν μ := by
rw [dual_apply, mul_assoc]
simp
end minkowskiMatrix