PhysLean/HepLean/PerturbationTheory/Wick/Signs/StaticWickCoef.lean

94 lines
2.9 KiB
Text
Raw Normal View History

2024-12-19 14:25:09 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Algebra.FreeAlgebra
import Mathlib.Algebra.Lie.OfAssociative
import Mathlib.Analysis.Complex.Basic
import HepLean.PerturbationTheory.Wick.Signs.KoszulSign
/-!
# Koszul sign insert
-/
namespace Wick
open HepLean.List
2024-12-19 15:40:04 +00:00
/-- The sign that appears in the static version of Wicks theorem.
This is actually equal to `superCommuteCoef q [r.get n] (r.take n)`, something
which will be proved in a lemma. -/
def staticWickCoef {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
2024-12-19 14:25:09 +00:00
[DecidableRel le1] (i : I) (n : Fin r.length) : :=
koszulSign le1 q r *
superCommuteCoef q [i] (List.take (↑((HepLean.List.insertionSortEquiv le1 r) n))
(List.insertionSort le1 r)) *
koszulSign le1 q (r.eraseIdx ↑n)
2024-12-19 15:40:04 +00:00
lemma staticWickCoef_eq_q {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
2024-12-19 14:25:09 +00:00
[DecidableRel le1] (i : I) (n : Fin r.length)
(hq : q i = q (r.get n)) :
2024-12-19 15:40:04 +00:00
staticWickCoef q le1 r i n =
2024-12-19 14:25:09 +00:00
koszulSign le1 q r *
superCommuteCoef q [r.get n] (List.take (↑(insertionSortEquiv le1 r n))
(List.insertionSort le1 r)) *
koszulSign le1 q (r.eraseIdx ↑n) := by
2024-12-19 15:40:04 +00:00
simp [staticWickCoef, superCommuteCoef, grade, hq]
2024-12-19 14:25:09 +00:00
lemma insertIdx_eraseIdx {I : Type} :
(n : ) → (r : List I) → (hn : n < r.length) →
List.insertIdx n (r.get ⟨n, hn⟩) (r.eraseIdx n) = r
| n, [], hn => by
simp at hn
| 0, r0 :: r, hn => by
simp
| n + 1, r0 :: r, hn => by
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ,
List.eraseIdx_cons_succ, List.insertIdx_succ_cons, List.cons.injEq, true_and]
exact insertIdx_eraseIdx n r _
2024-12-19 15:40:04 +00:00
lemma staticWickCoef_eq_get {I : Type} (q : I → Fin 2) (le1 :I → I → Prop) (r : List I)
2024-12-19 14:25:09 +00:00
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (i : I) (n : Fin r.length)
(heq : q i = q (r.get n)) :
2024-12-19 15:40:04 +00:00
staticWickCoef q le1 r i n = superCommuteCoef q [r.get n] (r.take n) := by
rw [staticWickCoef_eq_q]
2024-12-19 14:25:09 +00:00
let r' := r.eraseIdx ↑n
have hr : List.insertIdx n (r.get n) (r.eraseIdx n) = r := by
exact insertIdx_eraseIdx n.1 r n.prop
conv_lhs =>
lhs
lhs
rw [← hr]
rw [koszulSign_insertIdx q le1 (r.get n) ((r.eraseIdx ↑n)) n (by
rw [List.length_eraseIdx]
simp only [Fin.is_lt, ↓reduceIte]
omega)]
rhs
rhs
rw [hr]
conv_lhs =>
lhs
lhs
rhs
enter [2, 1, 1]
rw [insertionSortEquiv_congr _ _ hr]
simp only [List.get_eq_getElem, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_mk, Fin.eta, Fin.coe_cast]
conv_lhs =>
lhs
rw [mul_assoc]
rhs
rw [insertSign]
rw [superCommuteCoef_mul_self]
simp only [mul_one]
rw [mul_assoc]
rw [koszulSign_mul_self]
simp only [mul_one]
rw [insertSign_eraseIdx]
rfl
exact heq
end Wick