PhysLean/HepLean/Mathematics/Fin.lean

449 lines
17 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.PiTensorProduct
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
/-!
# Fin lemmas
The purpose of this file is to define some results Fin currently
in Mathlib.
At some point these should either be up-streamed to Mathlib or replaced with definitions already
in Mathlib.
-/
namespace HepLean.Fin
open Fin
variable {n : Nat}
2024-10-19 10:07:03 +00:00
/-- Given a `i` and `x` in `Fin n.succ.succ` returns an element of `Fin n.succ`
subtracting 1 if `i.val ≤ x.val` else casting x. -/
def predAboveI (i x : Fin n.succ.succ) : Fin n.succ :=
if h : x.val < i.val then
⟨x.val, by omega⟩
else
⟨x.val - 1, by
by_cases hx : x = 0
· omega
· omega⟩
2024-10-19 09:19:29 +00:00
lemma predAboveI_self (i : Fin n.succ.succ) : predAboveI i i = ⟨i.val - 1, by omega⟩ := by
simp [predAboveI]
@[simp]
lemma predAboveI_succAbove (i : Fin n.succ.succ) (x : Fin n.succ) :
predAboveI i (Fin.succAbove i x) = x := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, predAboveI, Fin.succAbove, Fin.val_fin_lt, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
2024-10-19 09:19:29 +00:00
simp only [Fin.lt_def, Fin.coe_castSucc, not_lt, Nat.succ_eq_add_one, Fin.val_succ] at h1 h2
omega
· rfl
lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
Fin.succAbove i (predAboveI i x) = x := by
2024-10-19 09:19:29 +00:00
simp only [Fin.succAbove, predAboveI, Nat.succ_eq_add_one, Fin.val_fin_lt, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
rw [Fin.lt_def] at h1 h2
2024-10-19 09:19:29 +00:00
simp only [Fin.succ_mk, Nat.succ_eq_add_one, add_right_eq_self, one_ne_zero]
simp only [Fin.castSucc_mk, Fin.eta, Fin.val_fin_lt, not_lt] at h2
rw [Fin.le_def] at h2
omega
· rename_i h1 h2
2024-10-19 09:19:29 +00:00
simp only [not_lt] at h1
rw [Fin.le_def] at h1
rw [Fin.lt_def] at h2
2024-10-19 09:19:29 +00:00
simp only [Fin.castSucc_mk] at h2
omega
· rename_i h1 h2
2024-10-19 09:19:29 +00:00
simp only [Fin.succ_mk, Nat.succ_eq_add_one]
simp only [not_lt] at h1
rw [Fin.le_def] at h1
omega
2024-10-19 08:33:49 +00:00
lemma predAboveI_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
2024-10-19 09:19:29 +00:00
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
· intro h
subst h
rw [succsAbove_predAboveI h]
· intro h
rw [← h]
simp
lemma predAboveI_lt {i x : Fin n.succ.succ} (h : x.val < i.val) :
predAboveI i x = ⟨x.val, by omega⟩ := by
simp [predAboveI, h]
lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
predAboveI i x = ⟨x.val - 1, by omega⟩ := by
2024-11-02 08:50:17 +00:00
simp only [Nat.succ_eq_add_one, predAboveI, Fin.val_fin_lt, dite_eq_right_iff, Fin.mk.injEq]
omega
2024-10-18 16:08:17 +00:00
lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
i.succAbove (j.succAbove x) =
(i.succAbove j).succAbove ((predAboveI (i.succAbove j) i).succAbove x) := by
by_cases h1 : j.castSucc < i
2024-10-19 09:19:29 +00:00
· have hx := Fin.succAbove_of_castSucc_lt _ _ h1
2024-10-18 16:08:17 +00:00
rw [hx]
rw [predAboveI_ge h1]
by_cases hx1 : x.castSucc < j
2024-10-19 09:19:29 +00:00
· rw [Fin.succAbove_of_castSucc_lt _ _ hx1]
rw [Fin.succAbove_of_castSucc_lt _ _]
2024-10-18 16:08:17 +00:00
· nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_castSucc_lt _ _]
exact hx1
· rw [Fin.lt_def] at h1 hx1 ⊢
2025-01-05 16:46:15 +00:00
simp_all only [Nat.succ_eq_add_one, Fin.coe_castSucc]
2024-10-18 16:08:17 +00:00
omega
· exact Nat.lt_trans hx1 h1
2024-10-19 09:19:29 +00:00
· simp only [not_lt] at hx1
2024-10-18 16:08:17 +00:00
rw [Fin.le_def] at hx1
rw [Fin.lt_def] at h1
rw [Fin.succAbove_of_le_castSucc _ _ hx1]
by_cases hx2 : x.succ.castSucc < i
· rw [Fin.succAbove_of_castSucc_lt _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_le_castSucc]
2024-10-19 10:34:30 +00:00
· rfl
2024-10-18 16:08:17 +00:00
· exact hx1
· rw [Fin.lt_def] at hx2 ⊢
2025-01-05 16:46:15 +00:00
simp_all only [Nat.succ_eq_add_one, Fin.coe_castSucc, Fin.val_succ]
2024-10-18 16:08:17 +00:00
omega
2024-10-19 09:19:29 +00:00
· simp only [Nat.succ_eq_add_one, not_lt] at hx2
2024-10-18 16:08:17 +00:00
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
· rw [Fin.succAbove_of_le_castSucc]
rw [Fin.le_def]
exact Nat.le_succ_of_le hx1
· rw [Fin.le_def] at hx2 ⊢
simp_all
2024-10-19 09:19:29 +00:00
· simp only [Nat.succ_eq_add_one, not_lt] at h1
have hx := Fin.succAbove_of_le_castSucc _ _ h1
2024-10-18 16:08:17 +00:00
rw [hx]
rw [predAboveI_lt (Nat.lt_add_one_of_le h1)]
by_cases hx1 : j ≤ x.castSucc
· rw [Fin.succAbove_of_le_castSucc _ _ hx1]
rw [Fin.succAbove_of_le_castSucc _ _]
· nth_rewrite 2 [Fin.succAbove_of_le_castSucc _ _]
· rw [Fin.succAbove_of_le_castSucc _ _]
rw [Fin.le_def] at hx1 ⊢
2025-01-05 16:46:15 +00:00
simp_all only [Nat.succ_eq_add_one, Fin.coe_castSucc, Fin.val_succ, add_le_add_iff_right]
2024-10-18 16:08:17 +00:00
· rw [Fin.le_def] at h1 hx1 ⊢
2025-01-05 16:46:15 +00:00
simp_all only [Nat.succ_eq_add_one, Fin.coe_castSucc]
2024-10-18 16:08:17 +00:00
omega
· rw [Fin.le_def] at hx1 h1 ⊢
2025-01-05 16:46:15 +00:00
simp_all only [Nat.succ_eq_add_one, Fin.coe_castSucc, Fin.val_succ]
2024-10-18 16:08:17 +00:00
omega
2024-10-19 09:19:29 +00:00
· simp only [Nat.succ_eq_add_one, not_le] at hx1
2024-10-18 16:08:17 +00:00
rw [Fin.lt_def] at hx1
rw [Fin.le_def] at h1
rw [Fin.succAbove_of_castSucc_lt _ _ hx1]
by_cases hx2 : x.castSucc.castSucc < i
· rw [Fin.succAbove_of_castSucc_lt _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_castSucc_lt _ _]
2024-10-19 09:19:29 +00:00
rw [Fin.lt_def] at hx2 ⊢
2025-01-05 16:46:15 +00:00
simp_all only [Nat.succ_eq_add_one, Fin.coe_castSucc, Fin.val_succ]
2024-10-18 16:08:17 +00:00
omega
2024-10-19 09:19:29 +00:00
· rw [Fin.lt_def] at hx2 ⊢
2024-10-18 16:08:17 +00:00
simp_all
2024-10-19 09:19:29 +00:00
· simp only [not_lt] at hx2
2024-10-18 16:08:17 +00:00
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
· rw [Fin.succAbove_of_castSucc_lt]
2024-10-19 10:34:30 +00:00
· rfl
2024-10-18 16:08:17 +00:00
exact Fin.castSucc_lt_succ_iff.mpr hx1
· rw [Fin.le_def] at hx2 ⊢
simp_all
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
`i`th component. -/
def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
finSumFinEquiv.symm.trans <|
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
(Equiv.refl (Fin (n-i)))).trans <|
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
2024-12-17 16:35:34 +00:00
@[simp]
lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
finExtractOne i i = Sum.inl 0 := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, finExtractOne, Equiv.trans_apply, finCongr_apply,
Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.sumComm_apply, Equiv.coe_refl, Fin.isValue]
2024-10-19 09:47:23 +00:00
have h1 :
Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
2024-10-19 10:34:30 +00:00
rfl
rw [h1, finSumFinEquiv_symm_apply_castAdd]
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Sum.map_inl, Function.comp_apply, Fin.isValue]
2024-10-19 10:34:30 +00:00
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := rfl
rw [h2, finSumFinEquiv_symm_apply_natAdd]
rfl
lemma finExtractOne_symm_inr {n : } (i : Fin n.succ) :
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
ext x
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
change (finSumFinEquiv
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
by_cases hi : x.1 < i.1
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inl ⟨x, hi⟩ := by
rw [← finSumFinEquiv_symm_apply_castAdd]
2024-10-19 10:34:30 +00:00
rfl
rw [h1]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
rw [Fin.succAbove]
split
· rfl
rename_i hn
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
self_eq_add_right, one_ne_zero]
omega
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inr ⟨x - i, by omega⟩ := by
rw [← finSumFinEquiv_symm_apply_natAdd]
apply congrArg
ext
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
omega
rw [h1, Fin.succAbove]
split
· rename_i hn
simp_all [Fin.lt_def]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
omega
@[simp]
lemma finExtractOne_symm_inr_apply {n : } (i : Fin n.succ) (x : Fin n) :
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
@[simp]
lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
(finExtractOne i).symm (Sum.inl 0) = i := by
rfl
2024-12-17 16:35:34 +00:00
lemma finExtractOne_apply_neq {n : } (i j : Fin n.succ.succ) (hij : i ≠ j) :
finExtractOne i j = Sum.inr (predAboveI i j) := by
symm
apply (Equiv.symm_apply_eq _).mp ?_
2024-12-19 12:59:14 +00:00
simp only [Nat.succ_eq_add_one, finExtractOne_symm_inr_apply]
2024-12-17 16:35:34 +00:00
exact succsAbove_predAboveI hij
2024-10-19 10:07:03 +00:00
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
2024-10-21 06:53:58 +00:00
the map `Fin n.succ → Fin n.succ` obtained by dropping `i` and it's image. -/
2024-12-17 16:35:34 +00:00
def finExtractOnPermHom {m : } (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
Fin n.succ → Fin m.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
2024-12-19 12:59:14 +00:00
lemma finExtractOnPermHom_inv {m : } (i : Fin n.succ.succ)
(σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
2024-10-19 09:47:23 +00:00
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
funext x
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Function.comp_apply, finExtractOnPermHom, Equiv.symm_apply_apply,
finExtractOne_symm_inr_apply, id_eq]
by_cases h : σ (i.succAbove x) < σ i
· rw [predAboveI_lt h, Fin.succAbove_of_castSucc_lt]
· simp
· simp_all [Fin.lt_def]
have hσ : σ (i.succAbove x) ≠ σ i := by
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
exact Fin.succAbove_ne i x
have hn : σ i < σ (i.succAbove x) := by omega
rw [predAboveI_ge hn]
rw [Fin.succAbove_of_le_castSucc]
2024-10-19 09:19:29 +00:00
· simp only [Nat.succ_eq_add_one, Fin.succ_mk]
trans predAboveI i (σ.symm (σ (i.succAbove x)))
· congr
exact Nat.sub_add_cancel (Fin.lt_of_le_of_lt (Fin.zero_le (σ i)) hn)
simp
rw [Fin.le_def]
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Fin.castSucc_mk]
omega
2024-10-19 10:34:30 +00:00
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
2024-10-21 06:53:58 +00:00
the equivalence `Fin n.succ ≃ Fin n.succ` obtained by dropping `i` and it's image. -/
2024-12-17 16:35:34 +00:00
def finExtractOnePerm {m : } (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
Fin n.succ ≃ Fin m.succ where
2024-10-19 09:19:29 +00:00
toFun x := finExtractOnPermHom i σ x
invFun x := finExtractOnPermHom (σ i) σ.symm x
left_inv x := by
simpa using congrFun (finExtractOnPermHom_inv i σ) x
right_inv x := by
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
2024-12-19 12:59:14 +00:00
lemma finExtractOnePerm_equiv {n m : } (e : Fin n.succ.succ ≃ Fin m.succ.succ)
(i : Fin n.succ.succ) :
e ∘ i.succAbove = (e i).succAbove ∘ finExtractOnePerm i e := by
simp only [Nat.succ_eq_add_one, finExtractOnePerm, Equiv.coe_fn_mk]
2024-12-17 16:35:34 +00:00
funext x
2024-12-19 12:59:14 +00:00
simp only [Function.comp_apply, finExtractOnPermHom, Nat.succ_eq_add_one,
finExtractOne_symm_inr_apply]
2024-12-17 16:35:34 +00:00
rw [succsAbove_predAboveI]
2024-12-19 12:59:14 +00:00
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
2024-12-17 16:35:34 +00:00
exact Fin.ne_succAbove i x
2024-11-15 10:33:20 +00:00
@[simp]
lemma finExtractOnePerm_apply (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ)
2024-11-15 10:44:42 +00:00
(x : Fin n.succ) : finExtractOnePerm i σ x = predAboveI (σ i)
2024-11-15 10:33:20 +00:00
(σ ((finExtractOne i).symm (Sum.inr x))) := rfl
@[simp]
lemma finExtractOnePerm_symm_apply (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ)
2024-11-15 10:44:42 +00:00
(x : Fin n.succ) : (finExtractOnePerm i σ).symm x = predAboveI (σ.symm (σ i))
2024-11-15 10:33:20 +00:00
(σ.symm ((finExtractOne (σ i)).symm (Sum.inr x))) := rfl
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
the `i` and `(i.succAbove j)`. -/
def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
(finExtractOne i).trans <|
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
@[simp]
lemma finExtractTwo_apply_fst {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, finExtractTwo, Equiv.trans_apply, Equiv.sumCongr_apply,
Equiv.coe_refl, Fin.isValue]
simp [finExtractOne_apply_eq]
lemma finExtractTwo_symm_inr {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
rw [finExtractTwo]
ext1 x
simp
@[simp]
lemma finExtractTwo_symm_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inl_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
2024-10-19 10:34:30 +00:00
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by rfl
2024-10-18 10:24:49 +00:00
@[simp]
lemma finExtractTwo_apply_snd {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j (i.succAbove j) = Sum.inl (Sum.inr 0) := by
rw [← Equiv.eq_symm_apply]
simp
2025-01-14 00:11:17 +01:00
/-- Takes two maps `Fin n → Fin n` and returns the equivalence they form. -/
2024-11-14 15:26:31 +00:00
def finMapToEquiv (f1 : Fin n → Fin m) (f2 : Fin m → Fin n)
(h : ∀ x, f1 (f2 x) = x := by decide)
(h' : ∀ x, f2 (f1 x) = x := by decide) : Fin n ≃ Fin m where
toFun := f1
invFun := f2
left_inv := h'
right_inv := h
2024-11-15 10:33:20 +00:00
@[simp]
lemma finMapToEquiv_apply {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
{h : ∀ x, f1 (f2 x) = x} {h' : ∀ x, f2 (f1 x) = x} (x : Fin n) :
finMapToEquiv f1 f2 h h' x = f1 x := rfl
@[simp]
lemma finMapToEquiv_symm_apply {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
{h : ∀ x, f1 (f2 x) = x} {h' : ∀ x, f2 (f1 x) = x} (x : Fin m) :
(finMapToEquiv f1 f2 h h').symm x = f2 x := rfl
lemma finMapToEquiv_symm_eq {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
{h : ∀ x, f1 (f2 x) = x} {h' : ∀ x, f2 (f1 x) = x} :
(finMapToEquiv f1 f2 h h').symm = finMapToEquiv f2 f1 h' h := by
rfl
/-- Given an equivalence between `Fin n` and `Fin m`, the induced equivalence between
`Fin n.succ` and `Fin m.succ` derived by `Fin.cons`. -/
def equivCons {n m : } (e : Fin n ≃ Fin m) : Fin n.succ ≃ Fin m.succ where
toFun := Fin.cons 0 (Fin.succ ∘ e.toFun)
invFun := Fin.cons 0 (Fin.succ ∘ e.invFun)
left_inv i := by
rcases Fin.eq_zero_or_eq_succ i with hi | hi
· subst hi
simp
· obtain ⟨j, hj⟩ := hi
subst hj
simp
right_inv i := by
rcases Fin.eq_zero_or_eq_succ i with hi | hi
· subst hi
simp
· obtain ⟨j, hj⟩ := hi
subst hj
simp
2024-12-17 16:35:34 +00:00
@[simp]
lemma equivCons_zero {n m : } (e : Fin n ≃ Fin m) :
equivCons e 0 = 0 := by
simp [equivCons]
@[simp]
lemma equivCons_trans {n m k : } (e : Fin n ≃ Fin m) (f : Fin m ≃ Fin k) :
Fin.equivCons (e.trans f) = (Fin.equivCons e).trans (Fin.equivCons f) := by
refine Equiv.ext_iff.mpr ?_
intro x
2024-12-10 10:14:20 +00:00
simp only [Nat.succ_eq_add_one, equivCons, Equiv.toFun_as_coe, Equiv.coe_trans,
Equiv.invFun_as_coe, Equiv.coe_fn_mk, Equiv.trans_apply]
match x with
| ⟨0, h⟩ => rfl
| ⟨i + 1, h⟩ => rfl
@[simp]
lemma equivCons_castOrderIso {n m : } (h : n = m) :
(Fin.equivCons (Fin.castOrderIso h).toEquiv) = (Fin.castOrderIso (by simp [h])).toEquiv := by
refine Equiv.ext_iff.mpr ?_
intro x
2024-12-10 10:14:20 +00:00
simp only [Nat.succ_eq_add_one, equivCons, Equiv.toFun_as_coe, RelIso.coe_fn_toEquiv,
Equiv.invFun_as_coe, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Equiv.coe_fn_mk,
Fin.castOrderIso_apply]
match x with
| ⟨0, h⟩ => rfl
| ⟨i + 1, h⟩ => rfl
@[simp]
lemma equivCons_symm_succ {n m : } (e : Fin n ≃ Fin m) (i : ) (hi : i + 1 < m.succ) :
(Fin.equivCons e).symm ⟨i + 1, hi⟩ = (e.symm ⟨i, Nat.succ_lt_succ_iff.mp hi⟩).succ := by
2024-12-10 10:14:20 +00:00
simp only [Nat.succ_eq_add_one, equivCons, Equiv.toFun_as_coe, Equiv.invFun_as_coe,
Equiv.coe_fn_symm_mk]
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
rw [hi]
rw [Fin.cons_succ]
simp
2024-12-17 16:35:34 +00:00
@[simp]
lemma equivCons_succ {n m : } (e : Fin n ≃ Fin m) (i : ) (hi : i + 1 < n.succ) :
(Fin.equivCons e) ⟨i + 1, hi⟩ = (e ⟨i, Nat.succ_lt_succ_iff.mp hi⟩).succ := by
simp only [Nat.succ_eq_add_one, equivCons, Equiv.toFun_as_coe, Equiv.invFun_as_coe,
Equiv.coe_fn_symm_mk]
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
2024-12-19 12:59:14 +00:00
simp only [Equiv.coe_fn_mk]
2024-12-17 16:35:34 +00:00
rw [hi]
rw [Fin.cons_succ]
rfl
end HepLean.Fin