2025-01-20 15:17:48 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2025-01-21 06:11:47 +00:00
|
|
|
|
import HepLean.PerturbationTheory.FieldSpecification.NormalOrder
|
2025-01-20 15:17:48 +00:00
|
|
|
|
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
|
|
|
|
|
import HepLean.PerturbationTheory.Koszul.KoszulSign
|
|
|
|
|
/-!
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
# Normal Ordering in the CrAnAlgebra
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
In the module
|
|
|
|
|
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
|
|
|
|
|
we defined the normal ordering of a list of `CrAnStates`.
|
|
|
|
|
In this module we extend the normal ordering to a linear map on `CrAnAlgebra`.
|
|
|
|
|
|
|
|
|
|
We derive properties of this normal ordering.
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
namespace FieldSpecification
|
|
|
|
|
variable {𝓕 : FieldSpecification}
|
2025-01-20 15:17:48 +00:00
|
|
|
|
open FieldStatistic
|
|
|
|
|
|
|
|
|
|
namespace CrAnAlgebra
|
|
|
|
|
|
|
|
|
|
noncomputable section
|
|
|
|
|
|
|
|
|
|
/-- The linear map on the free creation and annihlation
|
|
|
|
|
algebra defined as the map taking
|
|
|
|
|
a list of CrAnStates to the normal-ordered list of states multiplied by
|
|
|
|
|
the sign corresponding to the number of fermionic-fermionic
|
|
|
|
|
exchanges done in ordering. -/
|
|
|
|
|
def normalOrder : CrAnAlgebra 𝓕 →ₗ[ℂ] CrAnAlgebra 𝓕 :=
|
|
|
|
|
Basis.constr ofCrAnListBasis ℂ fun φs =>
|
|
|
|
|
normalOrderSign φs • ofCrAnList (normalOrderList φs)
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
|
|
|
|
|
normalOrder (ofCrAnList φs) = normalOrderSign φs • ofCrAnList (normalOrderList φs) := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [← ofListBasis_eq_ofList, normalOrder, Basis.constr_basis]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma ofCrAnList_eq_normalOrder (φs : List 𝓕.CrAnStates) :
|
|
|
|
|
ofCrAnList (normalOrderList φs) = normalOrderSign φs • normalOrder (ofCrAnList φs) := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
|
|
|
|
|
one_smul]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [← ofCrAnList_nil, normalOrder_ofCrAnList, normalOrderSign_nil, normalOrderList_nil,
|
|
|
|
|
ofCrAnList_nil, one_smul]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Normal ordering with a creation operator on the left or annihilation on the right
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
lemma normalOrder_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
|
|
|
|
|
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
|
|
|
|
|
normalOrder (ofCrAnList (φ :: φs)) =
|
|
|
|
|
ofCrAnState φ * normalOrder (ofCrAnList φs) := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderSign_cons_create φ hφ, normalOrderList_cons_create φ hφ φs]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [ofCrAnList_cons, normalOrder_ofCrAnList, mul_smul_comm]
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_create_mul (φ : 𝓕.CrAnStates)
|
|
|
|
|
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create)
|
|
|
|
|
(a : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (ofCrAnState φ * a) = ofCrAnState φ * normalOrder a := by
|
|
|
|
|
change (normalOrder ∘ₗ mulLinearMap (ofCrAnState φ)) a =
|
|
|
|
|
(mulLinearMap (ofCrAnState φ) ∘ₗ normalOrder) a
|
2025-01-23 01:44:02 +01:00
|
|
|
|
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
|
|
|
|
|
LinearMap.coe_comp, Function.comp_apply]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [← ofCrAnList_cons, normalOrder_ofCrAnList_cons_create φ hφ]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_ofCrAnList_append_annihilate (φ : 𝓕.CrAnStates)
|
|
|
|
|
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
|
|
|
|
|
normalOrder (ofCrAnList (φs ++ [φ])) =
|
|
|
|
|
normalOrder (ofCrAnList φs) * ofCrAnState φ := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderSign_append_annihlate φ hφ φs,
|
|
|
|
|
normalOrderList_append_annihilate φ hφ φs, ofCrAnList_append, ofCrAnList_singleton,
|
|
|
|
|
normalOrder_ofCrAnList, smul_mul_assoc]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
|
|
|
|
|
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
|
|
|
|
|
(a : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (a * ofCrAnState φ) = normalOrder a * ofCrAnState φ := by
|
|
|
|
|
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φ)) a =
|
|
|
|
|
(mulLinearMap.flip (ofCrAnState φ) ∘ₗ normalOrder) a
|
2025-01-23 01:44:02 +01:00
|
|
|
|
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
|
|
|
|
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton,
|
|
|
|
|
normalOrder_ofCrAnList_append_annihilate φ hφ]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
|
|
|
|
|
crPart (StateAlgebra.ofState φ) * normalOrder a := by
|
|
|
|
|
match φ with
|
|
|
|
|
| .negAsymp φ =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
2025-01-22 06:26:28 +00:00
|
|
|
|
exact normalOrder_create_mul ⟨States.negAsymp φ, ()⟩ rfl a
|
|
|
|
|
| .position φ =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [crPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
|
|
|
|
exact normalOrder_create_mul _ rfl _
|
|
|
|
|
| .posAsymp φ => simp
|
2025-01-22 06:26:28 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (a * anPart (StateAlgebra.ofState φ)) =
|
|
|
|
|
normalOrder a * anPart (StateAlgebra.ofState φ) := by
|
|
|
|
|
match φ with
|
2025-01-23 01:44:02 +01:00
|
|
|
|
| .negAsymp φ => simp
|
2025-01-22 06:26:28 +00:00
|
|
|
|
| .position φ =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [anPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
|
|
|
|
exact normalOrder_mul_annihilate _ rfl _
|
2025-01-22 06:26:28 +00:00
|
|
|
|
| .posAsymp φ =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [anPart, StateAlgebra.ofState, FreeAlgebra.lift_ι_apply]
|
|
|
|
|
refine normalOrder_mul_annihilate _ rfl _
|
2025-01-22 06:26:28 +00:00
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Normal ordering for an adjacent creation and annihliation state
|
|
|
|
|
|
|
|
|
|
The main result of this section is `normalOrder_superCommute_annihilate_create`.
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
2025-01-22 06:26:28 +00:00
|
|
|
|
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(φs φs' : List 𝓕.CrAnStates) :
|
|
|
|
|
normalOrder (ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) =
|
|
|
|
|
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
|
|
|
|
normalOrder (ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
|
|
|
|
|
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
|
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa, ← smul_smul, ← normalOrder_ofCrAnList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [ofCrAnList_append, ofCrAnList_cons, ofCrAnList_cons]
|
|
|
|
|
noncomm_ring
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
2025-01-22 06:26:28 +00:00
|
|
|
|
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(φs : List 𝓕.CrAnStates) (a : 𝓕.CrAnAlgebra) :
|
|
|
|
|
normalOrder (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) =
|
|
|
|
|
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
|
|
|
|
normalOrder (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
|
|
|
|
|
change (normalOrder ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
|
|
|
|
|
(smulLinearMap _ ∘ₗ normalOrder ∘ₗ
|
|
|
|
|
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
|
2025-01-23 01:44:02 +01:00
|
|
|
|
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) a
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
|
|
|
|
|
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
|
|
|
|
|
rw [normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList φc φa hφc hφa]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
2025-01-22 08:57:46 +00:00
|
|
|
|
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(a b : 𝓕.CrAnAlgebra) :
|
|
|
|
|
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
|
|
|
|
|
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
|
|
|
|
normalOrder (a * ofCrAnState φa * ofCrAnState φc * b) := by
|
|
|
|
|
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
|
|
|
|
|
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
|
|
|
|
|
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
|
|
|
|
|
normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φa * (ofCrAnState φc * b))) a
|
2025-01-23 01:44:02 +01:00
|
|
|
|
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun l ↦ ?_) _
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
2025-01-23 01:44:02 +01:00
|
|
|
|
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1, ← mul_assoc,
|
|
|
|
|
normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
|
2025-01-22 06:26:28 +00:00
|
|
|
|
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(a b : 𝓕.CrAnAlgebra) :
|
|
|
|
|
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
simp only [superCommute_ofCrAnState_ofCrAnState, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
|
|
|
|
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc, ← mul_assoc, ← mul_assoc,
|
|
|
|
|
normalOrder_swap_create_annihlate φc φa hφc hφa]
|
|
|
|
|
simp
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
|
2025-01-22 06:26:28 +00:00
|
|
|
|
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(a b : 𝓕.CrAnAlgebra) :
|
|
|
|
|
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
|
2025-01-22 05:51:52 +00:00
|
|
|
|
rw [superCommute_ofCrAnState_ofCrAnState_symm]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
|
|
|
|
|
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
exact Or.inr (normalOrder_superCommute_create_annihilate φc φa hφc hφa ..)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
|
|
|
|
normalOrder (a * (anPart (StateAlgebra.ofState φ')) *
|
|
|
|
|
(crPart (StateAlgebra.ofState φ)) * b) := by
|
|
|
|
|
match φ, φ' with
|
2025-01-23 01:44:02 +01:00
|
|
|
|
| _, .negAsymp φ' => simp
|
|
|
|
|
| .posAsymp φ, _ => simp
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .position φ, .position φ' =>
|
|
|
|
|
simp only [crPart_position, anPart_position, instCommGroup.eq_1]
|
|
|
|
|
rw [normalOrder_swap_create_annihlate]
|
|
|
|
|
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rfl; rfl
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .negAsymp φ, .posAsymp φ' =>
|
|
|
|
|
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1]
|
|
|
|
|
rw [normalOrder_swap_create_annihlate]
|
|
|
|
|
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rfl; rfl
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .negAsymp φ, .position φ' =>
|
|
|
|
|
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1]
|
|
|
|
|
rw [normalOrder_swap_create_annihlate]
|
|
|
|
|
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rfl; rfl
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .position φ, .posAsymp φ' =>
|
|
|
|
|
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1]
|
|
|
|
|
rw [normalOrder_swap_create_annihlate]
|
|
|
|
|
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rfl; rfl
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Normal ordering for an anPart and crPart
|
|
|
|
|
|
|
|
|
|
Using the results from above.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
|
|
|
|
|
(anPart (StateAlgebra.ofState φ)) * b) := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
simp [normalOrder_swap_crPart_anPart, smul_smul]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (a * superCommute
|
|
|
|
|
(crPart (StateAlgebra.ofState φ)) (anPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
|
|
|
|
match φ, φ' with
|
2025-01-23 01:44:02 +01:00
|
|
|
|
| _, .negAsymp φ' => simp
|
|
|
|
|
| .posAsymp φ', _ => simp
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .position φ, .position φ' =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [crPart_position, anPart_position]
|
|
|
|
|
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .negAsymp φ, .posAsymp φ' =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [crPart_negAsymp, anPart_posAsymp]
|
|
|
|
|
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .negAsymp φ, .position φ' =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [crPart_negAsymp, anPart_position]
|
|
|
|
|
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .position φ, .posAsymp φ' =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [crPart_position, anPart_posAsymp]
|
|
|
|
|
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
|
|
|
|
normalOrder (a * superCommute
|
|
|
|
|
(anPart (StateAlgebra.ofState φ)) (crPart (StateAlgebra.ofState φ')) * b) = 0 := by
|
|
|
|
|
match φ, φ' with
|
2025-01-23 01:44:02 +01:00
|
|
|
|
| .negAsymp φ', _ => simp
|
|
|
|
|
| _, .posAsymp φ' => simp
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .position φ, .position φ' =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [anPart_position, crPart_position]
|
|
|
|
|
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .posAsymp φ', .negAsymp φ =>
|
|
|
|
|
simp only [anPart_posAsymp, crPart_negAsymp]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .position φ', .negAsymp φ =>
|
|
|
|
|
simp only [anPart_position, crPart_negAsymp]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
| .posAsymp φ, .position φ' =>
|
|
|
|
|
simp only [anPart_posAsymp, crPart_position]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## The normal ordering of a product of two states
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
|
|
|
|
|
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
|
|
|
|
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
|
|
|
|
|
rw [normalOrder_crPart_mul]
|
|
|
|
|
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
|
|
|
|
|
rw [normalOrder_crPart_mul, normalOrder_one]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
|
|
|
|
|
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
|
|
|
|
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
|
|
|
|
rw [normalOrder_mul_anPart]
|
|
|
|
|
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
|
|
|
|
|
rw [normalOrder_mul_anPart, normalOrder_one]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
|
|
|
|
|
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
|
|
|
|
|
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
|
|
|
|
rw [normalOrder_crPart_mul]
|
|
|
|
|
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
|
|
|
|
|
rw [normalOrder_mul_anPart, normalOrder_one]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
|
|
|
|
|
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
|
|
|
|
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
|
|
|
|
|
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
|
|
|
|
|
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
|
|
|
|
|
crPart (StateAlgebra.ofState φ')))]
|
|
|
|
|
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
|
|
|
|
|
normalOrder (ofState φ * ofState φ') =
|
|
|
|
|
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
|
|
|
|
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
|
|
|
|
|
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
|
|
|
|
|
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart, mul_add, add_mul, add_mul]
|
2025-01-22 06:26:28 +00:00
|
|
|
|
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
|
|
|
|
|
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
|
|
|
|
|
abel
|
|
|
|
|
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Normal order with super commutors
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-22 10:32:39 +00:00
|
|
|
|
TODO "Split the following two lemmas up into smaller parts."
|
2025-01-22 06:26:28 +00:00
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
|
|
|
|
|
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
|
|
|
|
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
|
|
|
|
|
(normalOrder (ofCrAnList φs *
|
2025-01-22 06:26:28 +00:00
|
|
|
|
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
|
2025-01-20 15:17:48 +00:00
|
|
|
|
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
|
|
|
|
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
|
|
|
|
|
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
lhs; rhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
|
|
|
|
|
← ofCrAnList_append]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
lhs
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [createFilter_append, createFilter_append, createFilter_append,
|
|
|
|
|
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
|
|
|
|
|
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
|
|
|
|
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
|
|
|
|
|
enter [2, 1, 2]
|
|
|
|
|
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
|
|
|
|
|
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
|
|
|
|
|
rw [← annihilateFilter_append]
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rhs; rhs
|
|
|
|
|
rw [smul_mul_assoc, Algebra.mul_smul_comm, smul_mul_assoc]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rhs
|
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
|
|
|
|
|
← ofCrAnList_append]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
rhs
|
|
|
|
|
rw [map_smul]
|
|
|
|
|
rhs
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [createFilter_append, createFilter_append, createFilter_append,
|
|
|
|
|
createFilter_singleton_create _ hφc, createFilter_singleton_create _ hφc']
|
|
|
|
|
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
|
|
|
|
annihilateFilter_singleton_create _ hφc, annihilateFilter_singleton_create _ hφc']
|
|
|
|
|
enter [2, 1, 2]
|
|
|
|
|
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
|
|
|
|
|
List.append_nil, Algebra.smul_mul_assoc]
|
|
|
|
|
rw [← annihilateFilter_append]
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
lhs; lhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rhs; rhs; lhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
rw [normalOrderSign_swap_create_create φc φc' hφc hφc']
|
|
|
|
|
rw [smul_smul, mul_comm, ← smul_smul]
|
|
|
|
|
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rhs; rhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
|
|
|
|
|
rw [← smul_mul_assoc, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [← sub_mul, ← sub_mul, ← mul_sub, ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
|
|
|
|
|
|
|
|
|
|
lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
|
|
|
|
(φa φa' : 𝓕.CrAnStates)
|
|
|
|
|
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
|
|
|
|
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
|
|
|
|
|
(φs φs' : List 𝓕.CrAnStates) :
|
|
|
|
|
(normalOrder (ofCrAnList φs *
|
|
|
|
|
superCommute (ofCrAnState φa) (ofCrAnState φa') * ofCrAnList φs')) =
|
|
|
|
|
normalOrderSign (φs ++ φa' :: φa :: φs') •
|
|
|
|
|
(ofCrAnList (createFilter (φs ++ φs'))
|
|
|
|
|
* ofCrAnList (annihilateFilter φs) * superCommute (ofCrAnState φa) (ofCrAnState φa')
|
|
|
|
|
* ofCrAnList (annihilateFilter φs')) := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
lhs; rhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
|
|
|
|
|
← ofCrAnList_append]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
lhs
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [createFilter_append, createFilter_append, createFilter_append,
|
|
|
|
|
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
|
|
|
|
|
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
|
|
|
|
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
|
|
|
|
|
enter [2, 1, 1]
|
|
|
|
|
simp only [List.singleton_append, List.append_assoc, List.cons_append, List.append_nil,
|
|
|
|
|
instCommGroup.eq_1, Algebra.smul_mul_assoc, Algebra.mul_smul_comm, map_smul]
|
|
|
|
|
rw [← createFilter_append]
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rhs; rhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [smul_mul_assoc]
|
|
|
|
|
rw [Algebra.mul_smul_comm, smul_mul_assoc]
|
|
|
|
|
rhs
|
|
|
|
|
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
|
|
|
|
|
← ofCrAnList_append]
|
|
|
|
|
conv_lhs =>
|
|
|
|
|
rhs
|
|
|
|
|
rw [map_smul]
|
|
|
|
|
rhs
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rw [normalOrder_ofCrAnList, normalOrderList_eq_createFilter_append_annihilateFilter]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [createFilter_append, createFilter_append, createFilter_append,
|
|
|
|
|
createFilter_singleton_annihilate _ hφa, createFilter_singleton_annihilate _ hφa']
|
|
|
|
|
rw [annihilateFilter_append, annihilateFilter_append, annihilateFilter_append,
|
|
|
|
|
annihilateFilter_singleton_annihilate _ hφa, annihilateFilter_singleton_annihilate _ hφa']
|
|
|
|
|
enter [2, 1, 1]
|
|
|
|
|
simp only [List.singleton_append, List.append_assoc, List.cons_append, instCommGroup.eq_1,
|
|
|
|
|
List.append_nil, Algebra.smul_mul_assoc]
|
|
|
|
|
rw [← createFilter_append]
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
lhs; lhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rhs; rhs; lhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp
|
|
|
|
|
rw [normalOrderSign_swap_annihilate_annihilate φa φa' hφa hφa']
|
|
|
|
|
rw [smul_smul, mul_comm, ← smul_smul]
|
|
|
|
|
rw [← smul_sub, ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
|
|
|
|
|
conv_lhs =>
|
2025-01-23 01:44:02 +01:00
|
|
|
|
rhs; rhs
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [ofCrAnList_append, ofCrAnList_append, ofCrAnList_append]
|
|
|
|
|
rw [← Algebra.mul_smul_comm, ← smul_mul_assoc, ← Algebra.mul_smul_comm]
|
|
|
|
|
rw [← mul_sub, ← sub_mul, ← mul_sub]
|
|
|
|
|
apply congrArg
|
|
|
|
|
conv_rhs => rw [mul_assoc, mul_assoc]
|
|
|
|
|
apply congrArg
|
|
|
|
|
rw [mul_assoc]
|
|
|
|
|
apply congrArg
|
|
|
|
|
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
|
|
|
|
|
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
|
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
/-!
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
## Super commututators involving a normal order.
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
-/
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
|
|
|
|
|
⟨ofCrAnList φs, normalOrder (ofCrAnList φs')⟩ₛca =
|
|
|
|
|
ofCrAnList φs * normalOrder (ofCrAnList φs') -
|
|
|
|
|
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofCrAnList φs') * ofCrAnList φs := by
|
2025-01-22 05:51:52 +00:00
|
|
|
|
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
smul_sub, smul_smul, mul_comm]
|
|
|
|
|
|
|
|
|
|
lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
|
|
|
|
|
(φs' : List 𝓕.States) : ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca =
|
|
|
|
|
ofCrAnList φs * normalOrder (ofStateList φs') -
|
|
|
|
|
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs := by
|
|
|
|
|
rw [ofStateList_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
|
|
|
|
← Finset.sum_sub_distrib, map_sum]
|
|
|
|
|
congr
|
|
|
|
|
funext n
|
|
|
|
|
rw [ofCrAnList_superCommute_normalOrder_ofCrAnList,
|
|
|
|
|
CrAnSection.statistics_eq_state_statistics]
|
|
|
|
|
|
2025-01-22 06:26:28 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
## Multiplications with normal order written in terms of super commute.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates)
|
|
|
|
|
(φs' : List 𝓕.States) :
|
|
|
|
|
ofCrAnList φs * normalOrder (ofStateList φs') =
|
|
|
|
|
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnList φs
|
|
|
|
|
+ ⟨ofCrAnList φs, normalOrder (ofStateList φs')⟩ₛca := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
simp [ofCrAnList_superCommute_normalOrder_ofStateList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.CrAnStates)
|
|
|
|
|
(φs' : List 𝓕.States) :
|
|
|
|
|
ofCrAnState φ * normalOrder (ofStateList φs') =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs') * ofCrAnState φ
|
|
|
|
|
+ ⟨ofCrAnState φ, normalOrder (ofStateList φs')⟩ₛca := by
|
2025-01-23 01:44:02 +01:00
|
|
|
|
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
|
|
|
|
|
(φs' : List 𝓕.States) :
|
|
|
|
|
anPart (StateAlgebra.ofState φ) * normalOrder (ofStateList φs') =
|
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • normalOrder (ofStateList φs' * anPart (StateAlgebra.ofState φ))
|
|
|
|
|
+ ⟨anPart (StateAlgebra.ofState φ), normalOrder (ofStateList φs')⟩ₛca := by
|
|
|
|
|
rw [normalOrder_mul_anPart]
|
|
|
|
|
match φ with
|
2025-01-23 01:44:02 +01:00
|
|
|
|
| .negAsymp φ => simp
|
|
|
|
|
| .position φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute, crAnStatistics]
|
|
|
|
|
| .posAsymp φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute, crAnStatistics]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end CrAnAlgebra
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
end FieldSpecification
|