2024-04-18 08:40:46 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import Mathlib.Tactic.FinCases
|
|
|
|
|
import Mathlib.Algebra.Module.Basic
|
|
|
|
|
import Mathlib.Tactic.Ring
|
|
|
|
|
import Mathlib.Algebra.GroupWithZero.Units.Lemmas
|
|
|
|
|
import HepLean.AnomalyCancellation.Basic
|
|
|
|
|
import Mathlib.Algebra.BigOperators.Fin
|
|
|
|
|
import Mathlib.Logic.Equiv.Fin
|
|
|
|
|
/-!
|
|
|
|
|
# Anomaly cancellation conditions for n family SM.
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
universe v u
|
|
|
|
|
open Nat
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
|
|
|
|
/-- The vector space of charges corresponding to the SM fermions with RHN. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def SMνCharges (n : ℕ) : ACCSystemCharges := ACCSystemChargesMk (6 * n)
|
|
|
|
|
|
|
|
|
|
/-- The vector spaces of charges of one species of fermions in the SM. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def SMνSpecies (n : ℕ) : ACCSystemCharges := ACCSystemChargesMk n
|
|
|
|
|
|
|
|
|
|
namespace SMνCharges
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
|
|
|
|
|
/-- An equivalence between `(SMνCharges n).charges` and `(Fin 6 → Fin n → ℚ)`
|
|
|
|
|
splitting the charges into species.-/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def toSpeciesEquiv : (SMνCharges n).charges ≃ (Fin 6 → Fin n → ℚ) :=
|
|
|
|
|
((Equiv.curry _ _ _).symm.trans ((@finProdFinEquiv 6 n).arrowCongr (Equiv.refl ℚ))).symm
|
|
|
|
|
|
|
|
|
|
/-- Given an `i ∈ Fin 6`, the projection of charges onto a given species. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def toSpecies (i : Fin 6) : (SMνCharges n).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
|
|
|
|
toFun S := toSpeciesEquiv S i
|
|
|
|
|
map_add' _ _ := by aesop
|
|
|
|
|
map_smul' _ _ := by aesop
|
|
|
|
|
|
|
|
|
|
lemma charges_eq_toSpecies_eq (S T : (SMνCharges n).charges) :
|
|
|
|
|
S = T ↔ ∀ i, toSpecies i S = toSpecies i T := by
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
intro h
|
|
|
|
|
rw [h]
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [forall_const]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
intro h
|
|
|
|
|
apply toSpeciesEquiv.injective
|
|
|
|
|
funext i
|
|
|
|
|
exact h i
|
|
|
|
|
|
|
|
|
|
lemma toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6 → Fin n → ℚ) ) :
|
|
|
|
|
(toSpecies i) (toSpeciesEquiv.symm f) = f i := by
|
|
|
|
|
change (toSpeciesEquiv ∘ toSpeciesEquiv.symm ) _ i = f i
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
lemma toSpecies_one (S : (SMνCharges 1).charges) (j : Fin 6) :
|
|
|
|
|
toSpecies j S ⟨0, by simp⟩ = S j := by
|
|
|
|
|
match j with
|
|
|
|
|
| 0 => rfl
|
|
|
|
|
| 1 => rfl
|
|
|
|
|
| 2 => rfl
|
|
|
|
|
| 3 => rfl
|
|
|
|
|
| 4 => rfl
|
|
|
|
|
| 5 => rfl
|
|
|
|
|
|
|
|
|
|
/-- The `Q` charges as a map `Fin n → ℚ`. -/
|
|
|
|
|
abbrev Q := @toSpecies n 0
|
|
|
|
|
/-- The `U` charges as a map `Fin n → ℚ`. -/
|
|
|
|
|
abbrev U := @toSpecies n 1
|
|
|
|
|
/-- The `D` charges as a map `Fin n → ℚ`. -/
|
|
|
|
|
abbrev D := @toSpecies n 2
|
|
|
|
|
/-- The `L` charges as a map `Fin n → ℚ`. -/
|
|
|
|
|
abbrev L := @toSpecies n 3
|
|
|
|
|
/-- The `E` charges as a map `Fin n → ℚ`. -/
|
|
|
|
|
abbrev E := @toSpecies n 4
|
|
|
|
|
/-- The `N` charges as a map `Fin n → ℚ`. -/
|
|
|
|
|
abbrev N := @toSpecies n 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end SMνCharges
|
|
|
|
|
|
|
|
|
|
namespace SMνACCs
|
|
|
|
|
|
|
|
|
|
open SMνCharges
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
|
|
|
|
|
/-- The gravitational anomaly equation. -/
|
|
|
|
|
@[simp]
|
|
|
|
|
def accGrav : (SMνCharges n).charges →ₗ[ℚ] ℚ where
|
|
|
|
|
toFun S := ∑ i, (6 * Q S i + 3 * U S i + 3 * D S i + 2 * L S i + E S i + N S i)
|
|
|
|
|
map_add' S T := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat rw [map_add]
|
|
|
|
|
simp [Pi.add_apply, mul_add]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
ring
|
|
|
|
|
map_smul' a S := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat erw [map_smul]
|
|
|
|
|
simp [HSMul.hSMul, SMul.smul]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
-- rw [show Rat.cast a = a from rfl]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma accGrav_decomp (S : (SMνCharges n).charges) :
|
|
|
|
|
accGrav S = 6 * ∑ i, Q S i + 3 * ∑ i, U S i + 3 * ∑ i, D S i + 2 * ∑ i, L S i + ∑ i, E S i +
|
|
|
|
|
∑ i, N S i := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [accGrav, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
|
|
|
|
AddHom.coe_mk]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
|
|
|
|
|
/-- Extensionality lemma for `accGrav`. -/
|
|
|
|
|
lemma accGrav_ext {S T : (SMνCharges n).charges}
|
|
|
|
|
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
|
|
|
|
accGrav S = accGrav T := by
|
|
|
|
|
rw [accGrav_decomp, accGrav_decomp]
|
|
|
|
|
repeat erw [hj]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-- The `SU(2)` anomaly equation. -/
|
|
|
|
|
@[simp]
|
|
|
|
|
def accSU2 : (SMνCharges n).charges →ₗ[ℚ] ℚ where
|
|
|
|
|
toFun S := ∑ i, (3 * Q S i + L S i)
|
|
|
|
|
map_add' S T := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat rw [map_add]
|
|
|
|
|
simp [Pi.add_apply, mul_add]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
ring
|
|
|
|
|
map_smul' a S := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat erw [map_smul]
|
|
|
|
|
simp [HSMul.hSMul, SMul.smul]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
-- rw [show Rat.cast a = a from rfl]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
lemma accSU2_decomp (S : (SMνCharges n).charges) :
|
|
|
|
|
accSU2 S = 3 * ∑ i, Q S i + ∑ i, L S i := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [accSU2, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
|
|
|
|
AddHom.coe_mk]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
|
|
|
|
|
/-- Extensionality lemma for `accSU2`. -/
|
|
|
|
|
lemma accSU2_ext {S T : (SMνCharges n).charges}
|
|
|
|
|
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
|
|
|
|
accSU2 S = accSU2 T := by
|
|
|
|
|
rw [accSU2_decomp, accSU2_decomp]
|
|
|
|
|
repeat erw [hj]
|
|
|
|
|
|
|
|
|
|
/-- The `SU(3)` anomaly equations. -/
|
|
|
|
|
@[simp]
|
|
|
|
|
def accSU3 : (SMνCharges n).charges →ₗ[ℚ] ℚ where
|
|
|
|
|
toFun S := ∑ i, (2 * Q S i + U S i + D S i)
|
|
|
|
|
map_add' S T := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat rw [map_add]
|
|
|
|
|
simp [ Pi.add_apply, mul_add]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
ring
|
|
|
|
|
map_smul' a S := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat erw [map_smul]
|
|
|
|
|
simp [HSMul.hSMul, SMul.smul]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
-- rw [show Rat.cast a = a from rfl]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
lemma accSU3_decomp (S : (SMνCharges n).charges) :
|
|
|
|
|
accSU3 S = 2 * ∑ i, Q S i + ∑ i, U S i + ∑ i, D S i := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [accSU3, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
|
|
|
|
AddHom.coe_mk]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
repeat rw [Finset.sum_add_distrib]
|
|
|
|
|
repeat rw [← Finset.mul_sum]
|
|
|
|
|
|
|
|
|
|
/-- Extensionality lemma for `accSU3`. -/
|
|
|
|
|
lemma accSU3_ext {S T : (SMνCharges n).charges}
|
|
|
|
|
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
|
|
|
|
accSU3 S = accSU3 T := by
|
|
|
|
|
rw [accSU3_decomp, accSU3_decomp]
|
|
|
|
|
repeat rw [hj]
|
|
|
|
|
|
|
|
|
|
/-- The `Y²` anomaly equation. -/
|
|
|
|
|
@[simp]
|
|
|
|
|
def accYY : (SMνCharges n).charges →ₗ[ℚ] ℚ where
|
|
|
|
|
toFun S := ∑ i, (Q S i + 8 * U S i + 2 * D S i + 3 * L S i
|
|
|
|
|
+ 6 * E S i)
|
|
|
|
|
map_add' S T := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat rw [map_add]
|
|
|
|
|
simp [Pi.add_apply, mul_add]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
ring
|
|
|
|
|
map_smul' a S := by
|
|
|
|
|
simp only
|
|
|
|
|
repeat erw [map_smul]
|
|
|
|
|
simp [HSMul.hSMul, SMul.smul]
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
-- rw [show Rat.cast a = a from rfl]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
lemma accYY_decomp (S : (SMνCharges n).charges) :
|
|
|
|
|
accYY S = ∑ i, Q S i + 8 * ∑ i, U S i + 2 * ∑ i, D S i + 3 * ∑ i, L S i + 6 * ∑ i, E S i := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [accYY, SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
|
|
|
|
AddHom.coe_mk]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
repeat rw [Finset.sum_add_distrib]
|
|
|
|
|
repeat rw [← Finset.mul_sum]
|
|
|
|
|
|
|
|
|
|
/-- Extensionality lemma for `accYY`. -/
|
|
|
|
|
lemma accYY_ext {S T : (SMνCharges n).charges}
|
|
|
|
|
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
|
|
|
|
accYY S = accYY T := by
|
|
|
|
|
rw [accYY_decomp, accYY_decomp]
|
|
|
|
|
repeat rw [hj]
|
|
|
|
|
|
|
|
|
|
/-- The quadratic bilinear map. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def quadBiLin : BiLinearSymm (SMνCharges n).charges where
|
|
|
|
|
toFun S := ∑ i, (Q S.1 i * Q S.2 i +
|
|
|
|
|
- 2 * (U S.1 i * U S.2 i) +
|
|
|
|
|
D S.1 i * D S.2 i +
|
|
|
|
|
(- 1) * (L S.1 i * L S.2 i) +
|
|
|
|
|
E S.1 i * E S.2 i)
|
|
|
|
|
map_smul₁' a S T := by
|
|
|
|
|
simp only
|
|
|
|
|
rw [Finset.mul_sum]
|
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
repeat erw [map_smul]
|
|
|
|
|
simp [HSMul.hSMul, SMul.smul]
|
|
|
|
|
ring
|
|
|
|
|
map_add₁' S T R := by
|
|
|
|
|
simp only
|
|
|
|
|
rw [← Finset.sum_add_distrib]
|
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
repeat erw [map_add]
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue, neg_mul,
|
|
|
|
|
one_mul]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
ring
|
|
|
|
|
swap' S T := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, neg_mul, one_mul]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
lemma quadBiLin_decomp (S T : (SMνCharges n).charges) :
|
|
|
|
|
quadBiLin (S, T) = ∑ i, Q S i * Q T i - 2 * ∑ i, U S i * U T i +
|
|
|
|
|
∑ i, D S i * D T i - ∑ i, L S i * L T i + ∑ i, E S i * E T i := by
|
|
|
|
|
erw [← quadBiLin.toFun_eq_coe]
|
|
|
|
|
rw [quadBiLin]
|
|
|
|
|
simp only
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue, neg_mul, one_mul, add_left_inj]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
/-- The quadratic anomaly cancellation condition. -/
|
|
|
|
|
@[simp]
|
|
|
|
|
def accQuad : HomogeneousQuadratic (SMνCharges n).charges :=
|
|
|
|
|
(@quadBiLin n).toHomogeneousQuad
|
|
|
|
|
|
|
|
|
|
lemma accQuad_decomp (S : (SMνCharges n).charges) :
|
|
|
|
|
accQuad S = ∑ i, (Q S i)^2 - 2 * ∑ i, (U S i)^2 + ∑ i, (D S i)^2 - ∑ i, (L S i)^2
|
|
|
|
|
+ ∑ i, (E S i)^2 := by
|
|
|
|
|
erw [quadBiLin_decomp]
|
|
|
|
|
ring_nf
|
|
|
|
|
|
|
|
|
|
/-- Extensionality lemma for `accQuad`. -/
|
|
|
|
|
lemma accQuad_ext {S T : (SMνCharges n).charges}
|
|
|
|
|
(h : ∀ j, ∑ i, ((fun a => a^2) ∘ toSpecies j S) i =
|
|
|
|
|
∑ i, ((fun a => a^2) ∘ toSpecies j T) i) :
|
|
|
|
|
accQuad S = accQuad T := by
|
|
|
|
|
rw [accQuad_decomp, accQuad_decomp]
|
|
|
|
|
erw [h 0, h 1, h 2, h 3, h 4]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
/-- The symmetric trilinear form used to define the cubic acc. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def cubeTriLin : TriLinearSymm (SMνCharges n).charges where
|
|
|
|
|
toFun S := ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
|
|
|
|
|
+ 3 * ((U S.1 i) * (U S.2.1 i) * (U S.2.2 i))
|
|
|
|
|
+ 3 * ((D S.1 i) * (D S.2.1 i) * (D S.2.2 i))
|
|
|
|
|
+ 2 * ((L S.1 i) * (L S.2.1 i) * (L S.2.2 i))
|
|
|
|
|
+ ((E S.1 i) * (E S.2.1 i) * (E S.2.2 i))
|
|
|
|
|
+ ((N S.1 i) * (N S.2.1 i) * (N S.2.2 i)))
|
|
|
|
|
map_smul₁' a S T R := by
|
|
|
|
|
simp only
|
|
|
|
|
rw [Finset.mul_sum]
|
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
repeat erw [map_smul]
|
|
|
|
|
simp [HSMul.hSMul, SMul.smul]
|
|
|
|
|
ring
|
|
|
|
|
map_add₁' S T R L := by
|
|
|
|
|
simp only
|
|
|
|
|
rw [← Finset.sum_add_distrib]
|
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
repeat erw [map_add]
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
ring
|
|
|
|
|
swap₁' S T L := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
ring
|
|
|
|
|
swap₂' S T L := by
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
apply Fintype.sum_congr
|
|
|
|
|
intro i
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
lemma cubeTriLin_decomp (S T R : (SMνCharges n).charges) :
|
|
|
|
|
cubeTriLin (S, T, R) = 6 * ∑ i, (Q S i * Q T i * Q R i) + 3 * ∑ i, (U S i * U T i * U R i) +
|
|
|
|
|
3 * ∑ i, (D S i * D T i * D R i) + 2 * ∑ i, (L S i * L T i * L R i) +
|
|
|
|
|
∑ i, (E S i * E T i * E R i) + ∑ i, (N S i * N T i * N R i) := by
|
|
|
|
|
erw [← cubeTriLin.toFun_eq_coe]
|
|
|
|
|
rw [cubeTriLin]
|
|
|
|
|
simp only
|
|
|
|
|
repeat erw [Finset.sum_add_distrib]
|
|
|
|
|
repeat erw [← Finset.mul_sum]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-- The cubic ACC. -/
|
|
|
|
|
@[simp]
|
|
|
|
|
def accCube : HomogeneousCubic (SMνCharges n).charges := cubeTriLin.toCubic
|
|
|
|
|
|
|
|
|
|
lemma accCube_decomp (S : (SMνCharges n).charges) :
|
|
|
|
|
accCube S = 6 * ∑ i, (Q S i)^3 + 3 * ∑ i, (U S i)^3 + 3 * ∑ i, (D S i)^3 + 2 * ∑ i, (L S i)^3 +
|
|
|
|
|
∑ i, (E S i)^3 + ∑ i, (N S i)^3 := by
|
|
|
|
|
erw [cubeTriLin_decomp]
|
|
|
|
|
ring_nf
|
|
|
|
|
|
|
|
|
|
/-- Extensionality lemma for `accCube`. -/
|
|
|
|
|
lemma accCube_ext {S T : (SMνCharges n).charges}
|
|
|
|
|
(h : ∀ j, ∑ i, ((fun a => a^3) ∘ toSpecies j S) i =
|
|
|
|
|
∑ i, ((fun a => a^3) ∘ toSpecies j T) i) :
|
|
|
|
|
accCube S = accCube T := by
|
|
|
|
|
rw [accCube_decomp]
|
|
|
|
|
have h1 : ∀ j, ∑ i, (toSpecies j S i) ^ 3 = ∑ i, (toSpecies j T i) ^ 3 := by
|
|
|
|
|
intro j
|
|
|
|
|
erw [h]
|
|
|
|
|
rfl
|
|
|
|
|
repeat rw [h1]
|
|
|
|
|
rw [accCube_decomp]
|
|
|
|
|
|
|
|
|
|
end SMνACCs
|