PhysLean/HepLean/PerturbationTheory/FieldOpAlgebra/Basic.lean

601 lines
24 KiB
Text
Raw Normal View History

2025-01-27 06:20:25 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2025-02-03 12:12:36 +00:00
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.SuperCommute
2025-01-27 06:20:25 +00:00
import Mathlib.Algebra.RingQuot
2025-01-28 11:53:24 +00:00
import Mathlib.RingTheory.TwoSidedIdeal.Operations
2025-01-27 06:20:25 +00:00
/-!
# Field operator algebra
-/
namespace FieldSpecification
2025-02-03 11:05:43 +00:00
open FieldOpFreeAlgebra
2025-01-27 06:20:25 +00:00
open HepLean.List
open FieldStatistic
variable (𝓕 : FieldSpecification)
2025-02-10 10:59:09 +00:00
/-- The set contains the super-commutators equal to zero in the operator algebra.
This contains e.g. the super-commutator of two creation operators. -/
2025-02-03 11:05:43 +00:00
def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
2025-01-27 06:20:25 +00:00
{ x |
2025-02-03 11:28:14 +00:00
(∃ (φ1 φ2 φ3 : 𝓕.CrAnFieldOp),
2025-02-13 10:44:15 +00:00
x = [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF)
2025-02-03 11:28:14 +00:00
(∃ (φc φc' : 𝓕.CrAnFieldOp) (_ : 𝓕 |>ᶜ φc = .create) (_ : 𝓕 |>ᶜ φc' = .create),
2025-02-13 10:44:15 +00:00
x = [ofCrAnOpF φc, ofCrAnOpF φc']ₛF)
2025-02-03 11:28:14 +00:00
(∃ (φa φa' : 𝓕.CrAnFieldOp) (_ : 𝓕 |>ᶜ φa = .annihilate) (_ : 𝓕 |>ᶜ φa' = .annihilate),
2025-02-13 10:44:15 +00:00
x = [ofCrAnOpF φa, ofCrAnOpF φa']ₛF)
2025-02-03 11:28:14 +00:00
(∃ (φ φ' : 𝓕.CrAnFieldOp) (_ : ¬ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φ')),
2025-02-13 10:44:15 +00:00
x = [ofCrAnOpF φ, ofCrAnOpF φ']ₛF)}
2025-01-27 06:20:25 +00:00
2025-02-04 09:58:30 +00:00
/-- For a field specification `𝓕`, the algebra `𝓕.FieldOpAlgebra` is defined as the quotient
2025-02-10 10:21:57 +00:00
of the free algebra `𝓕.FieldOpFreeAlgebra` by the ideal generated by
2025-02-13 10:44:15 +00:00
- `[ofCrAnOpF φc, ofCrAnOpF φc']ₛF` for `φc` and `φc'` field creation operators.
2025-02-10 10:21:57 +00:00
This corresponds to the condition that two creation operators always super-commute.
2025-02-13 10:44:15 +00:00
- `[ofCrAnOpF φa, ofCrAnOpF φa']ₛF` for `φa` and `φa'` field annihilation operators.
2025-02-10 10:21:57 +00:00
This corresponds to the condition that two annihilation operators always super-commute.
2025-02-13 10:44:15 +00:00
- `[ofCrAnOpF φ, ofCrAnOpF φ']ₛF` for `φ` and `φ'` operators with different statistics.
2025-02-10 10:21:57 +00:00
This corresponds to the condition that two operators with different statistics always
2025-02-10 10:51:44 +00:00
super-commute. In other words, fermions and bosons always super-commute.
2025-02-13 10:44:15 +00:00
- `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF`. This corresponds to the condition,
2025-02-13 09:48:19 +00:00
when combined with the conditions above, that the super-commutator is in the center
2025-02-10 10:21:57 +00:00
of the algebra.
-/
2025-01-27 06:20:25 +00:00
abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
2025-02-03 11:05:43 +00:00
/-- The instance of a setoid on `FieldOpFreeAlgebra` from the ideal `TwoSidedIdeal`. -/
instance : Setoid (FieldOpFreeAlgebra 𝓕) := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.toSetoid
2025-01-27 06:20:25 +00:00
2025-02-03 11:05:43 +00:00
lemma equiv_iff_sub_mem_ideal (x y : FieldOpFreeAlgebra 𝓕) :
2025-01-27 06:20:25 +00:00
x ≈ y ↔ x - y ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
rw [← TwoSidedIdeal.rel_iff]
rfl
2025-02-06 12:38:05 +00:00
lemma equiv_iff_exists_add (x y : FieldOpFreeAlgebra 𝓕) :
x ≈ y ↔ ∃ a, x = y + a ∧ a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
apply Iff.intro
· intro h
rw [equiv_iff_sub_mem_ideal] at h
use x - y
simp [h]
· intro h
obtain ⟨a, rfl, ha⟩ := h
rw [equiv_iff_sub_mem_ideal]
simp [ha]
2025-02-13 10:44:15 +00:00
/-- For a field specification `𝓕`, `ι` is defined as the projection
2025-02-06 13:06:51 +00:00
`𝓕.FieldOpFreeAlgebra →ₐ[] FieldOpAlgebra 𝓕`
taking each element of `𝓕.FieldOpFreeAlgebra` to its equivalence class in `FieldOpAlgebra 𝓕`. -/
2025-02-03 11:05:43 +00:00
def ι : FieldOpFreeAlgebra 𝓕 →ₐ[] FieldOpAlgebra 𝓕 where
2025-01-27 06:20:25 +00:00
toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk'
map_one' := by rfl
map_mul' x y := by rfl
map_zero' := by rfl
map_add' x y := by rfl
commutes' x := by rfl
lemma ι_surjective : Function.Surjective (@ι 𝓕) := by
intro x
obtain ⟨x⟩ := x
use x
rfl
2025-02-03 11:05:43 +00:00
lemma ι_apply (x : FieldOpFreeAlgebra 𝓕) : ι x = Quotient.mk _ x := rfl
2025-01-27 06:20:25 +00:00
2025-02-03 11:05:43 +00:00
lemma ι_of_mem_fieldOpIdealSet (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
2025-01-27 06:20:25 +00:00
ι x = 0 := by
rw [ι_apply]
change ⟦x⟧ = ⟦0⟧
simp only [ringConGen, Quotient.eq]
refine RingConGen.Rel.of x 0 ?_
simpa using hx
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_of_create_create (φc φc' : 𝓕.CrAnFieldOp) (hφc : 𝓕 |>ᶜ φc = .create)
2025-02-13 10:44:15 +00:00
(hφc' : 𝓕 |>ᶜ φc' = .create) : ι [ofCrAnOpF φc, ofCrAnOpF φc']ₛF = 0 := by
2025-01-27 06:20:25 +00:00
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
simp only [exists_prop]
right
left
use φc, φc', hφc, hφc'
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_of_annihilate_annihilate (φa φa' : 𝓕.CrAnFieldOp)
2025-01-27 06:20:25 +00:00
(hφa : 𝓕 |>ᶜ φa = .annihilate) (hφa' : 𝓕 |>ᶜ φa' = .annihilate) :
2025-02-13 10:44:15 +00:00
ι [ofCrAnOpF φa, ofCrAnOpF φa']ₛF = 0 := by
2025-01-27 06:20:25 +00:00
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
simp only [exists_prop]
right
right
left
use φa, φa', hφa, hφa'
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_of_diff_statistic {φ ψ : 𝓕.CrAnFieldOp}
2025-02-13 10:44:15 +00:00
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF = 0 := by
2025-01-27 06:20:25 +00:00
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
right
right
right
use φ, ψ
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_zero_of_fermionic (φ ψ : 𝓕.CrAnFieldOp)
2025-02-13 10:44:15 +00:00
(h : [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF ∈ statisticSubmodule fermionic) :
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF = 0 := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton] at h ⊢
rcases statistic_neq_of_superCommuteF_fermionic h with h | h
· simp only [ofCrAnListF_singleton]
apply ι_superCommuteF_of_diff_statistic
2025-01-28 11:53:24 +00:00
simpa using h
· simp [h]
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_zero (φ ψ : 𝓕.CrAnFieldOp) :
2025-02-13 10:44:15 +00:00
[ofCrAnOpF φ, ofCrAnOpF ψ]ₛF ∈ statisticSubmodule bosonic
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF = 0 := by
rcases superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ] [ψ] with h | h
· simp_all [ofCrAnListF_singleton]
· simp_all only [ofCrAnListF_singleton]
2025-01-28 11:53:24 +00:00
right
exact ι_superCommuteF_zero_of_fermionic _ _ h
2025-01-28 11:53:24 +00:00
/-!
## Super-commutes are in the center
-/
@[simp]
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_ofCrAnOpF_superCommuteF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 φ3 : 𝓕.CrAnFieldOp) :
2025-02-13 10:44:15 +00:00
ι [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛF]ₛF = 0 := by
2025-01-28 11:53:24 +00:00
apply ι_of_mem_fieldOpIdealSet
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
left
use φ1, φ2, φ3
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 φ3 : 𝓕.CrAnFieldOp) :
2025-02-13 10:44:15 +00:00
ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, ofCrAnOpF φ3]ₛF = 0 := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
rcases superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ1] [φ2] with h | h
· rw [bonsonic_superCommuteF_symm h]
simp [ofCrAnListF_singleton]
· rcases ofCrAnListF_bosonic_or_fermionic [φ3] with h' | h'
· rw [superCommuteF_bonsonic_symm h']
simp [ofCrAnListF_singleton]
· rw [superCommuteF_fermionic_fermionic_symm h h']
simp [ofCrAnListF_singleton]
2025-01-28 11:53:24 +00:00
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnListF (φ1 φ2 : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) :
2025-02-13 10:44:15 +00:00
ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, ofCrAnListF φs]ₛF = 0 := by
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
rcases superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ1] [φ2] with h | h
· rw [superCommuteF_bosonic_ofCrAnListF_eq_sum _ _ h]
simp [ofCrAnListF_singleton, ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnOpF]
· rw [superCommuteF_fermionic_ofCrAnListF_eq_sum _ _ h]
simp [ofCrAnListF_singleton, ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnOpF]
2025-01-28 11:53:24 +00:00
@[simp]
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_fieldOpFreeAlgebra (φ1 φ2 : 𝓕.CrAnFieldOp)
2025-02-13 10:44:15 +00:00
(a : 𝓕.FieldOpFreeAlgebra) : ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, a]ₛF = 0 := by
change (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF) a = _
have h1 : (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF) = 0 := by
apply (ofCrAnListFBasis.ext fun l ↦ ?_)
simp [ι_superCommuteF_superCommuteF_ofCrAnOpF_ofCrAnOpF_ofCrAnListF]
2025-01-28 11:53:24 +00:00
rw [h1]
simp
2025-02-03 11:28:14 +00:00
lemma ι_commute_fieldOpFreeAlgebra_superCommuteF_ofCrAnOpF_ofCrAnOpF (φ1 φ2 : 𝓕.CrAnFieldOp)
2025-02-13 10:44:15 +00:00
(a : 𝓕.FieldOpFreeAlgebra) : ι a * ι [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF -
ι [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF * ι a = 0 := by
rcases ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_zero φ1 φ2 with h | h
2025-01-28 11:53:24 +00:00
swap
· simp [h]
2025-02-13 10:44:15 +00:00
trans - ι [[ofCrAnOpF φ1, ofCrAnOpF φ2]ₛF, a]ₛF
· rw [bosonic_superCommuteF h]
2025-01-28 11:53:24 +00:00
simp
· simp
2025-02-03 11:28:14 +00:00
lemma ι_superCommuteF_ofCrAnOpF_ofCrAnOpF_mem_center (φ ψ : 𝓕.CrAnFieldOp) :
2025-02-13 10:44:15 +00:00
ι [ofCrAnOpF φ, ofCrAnOpF ψ]ₛF ∈ Subalgebra.center 𝓕.FieldOpAlgebra := by
2025-01-28 11:53:24 +00:00
rw [Subalgebra.mem_center_iff]
intro a
obtain ⟨a, rfl⟩ := ι_surjective a
have h0 := ι_commute_fieldOpFreeAlgebra_superCommuteF_ofCrAnOpF_ofCrAnOpF φ ψ a
trans ι ((superCommuteF (ofCrAnOpF φ)) (ofCrAnOpF ψ)) * ι a + 0
2025-01-28 11:53:24 +00:00
swap
2025-01-29 16:41:10 +00:00
simp only [add_zero]
2025-01-28 11:53:24 +00:00
rw [← h0]
abel
/-!
2025-02-10 10:51:44 +00:00
## The kernel of ι
-/
2025-02-03 11:05:43 +00:00
lemma ι_eq_zero_iff_mem_ideal (x : FieldOpFreeAlgebra 𝓕) :
ι x = 0 ↔ x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
rw [ι_apply]
change ⟦x⟧ = ⟦0⟧ ↔ _
simp only [ringConGen, Quotient.eq]
rw [TwoSidedIdeal.mem_iff]
simp only
rfl
2025-02-05 07:22:14 +00:00
lemma bosonicProjF_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕)
2025-02-03 11:42:56 +00:00
(hx : x ∈ 𝓕.fieldOpIdealSet) :
2025-02-05 07:22:14 +00:00
x.bosonicProjF.1 ∈ 𝓕.fieldOpIdealSet x.bosonicProjF = 0 := by
have hx' := hx
2025-01-29 16:41:10 +00:00
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
⟨φ, φ', hdiff, rfl⟩
· rcases superCommuteF_superCommuteF_ofCrAnOpF_bosonic_or_fermionic φ1 φ2 φ3 with h | h
· left
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_bosonic _ h]
simpa using hx'
· right
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_fermionic _ h]
· rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φc φc' with h | h
· left
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_bosonic _ h]
simpa using hx'
· right
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_fermionic _ h]
· rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φa φa' with h | h
· left
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_bosonic _ h]
simpa using hx'
· right
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_fermionic _ h]
· rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φ φ' with h | h
· left
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_bosonic _ h]
simpa using hx'
· right
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_of_mem_fermionic _ h]
2025-02-05 07:22:14 +00:00
lemma fermionicProjF_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕)
2025-02-03 11:42:56 +00:00
(hx : x ∈ 𝓕.fieldOpIdealSet) :
2025-02-05 07:22:14 +00:00
x.fermionicProjF.1 ∈ 𝓕.fieldOpIdealSet x.fermionicProjF = 0 := by
have hx' := hx
2025-01-30 05:35:42 +00:00
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
⟨φ, φ', hdiff, rfl⟩
· rcases superCommuteF_superCommuteF_ofCrAnOpF_bosonic_or_fermionic φ1 φ2 φ3 with h | h
· right
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_bosonic _ h]
· left
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_fermionic _ h]
simpa using hx'
· rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φc φc' with h | h
· right
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_bosonic _ h]
· left
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_fermionic _ h]
simpa using hx'
· rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φa φa' with h | h
· right
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_bosonic _ h]
· left
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_fermionic _ h]
simpa using hx'
· rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φ φ' with h | h
· right
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_bosonic _ h]
· left
2025-02-05 07:22:14 +00:00
rw [fermionicProjF_of_mem_fermionic _ h]
simpa using hx'
2025-02-05 07:22:14 +00:00
lemma bosonicProjF_mem_ideal (x : FieldOpFreeAlgebra 𝓕)
2025-02-03 11:42:56 +00:00
(hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
2025-02-05 07:22:14 +00:00
x.bosonicProjF.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at hx
2025-02-03 11:42:56 +00:00
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
(h : a ∈ AddSubgroup.closure k) : Prop :=
2025-02-05 07:22:14 +00:00
a.bosonicProjF.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet
change p x hx
apply AddSubgroup.closure_induction
· intro x hx
2025-01-29 16:41:10 +00:00
simp only [p]
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨d, hd, y, hy, rfl⟩ := Set.mem_mul.mp ha
2025-02-05 07:22:14 +00:00
rw [bosonicProjF_mul, bosonicProjF_mul, fermionicProjF_mul]
2025-01-29 16:41:10 +00:00
simp only [add_mul]
2025-02-05 07:22:14 +00:00
rcases fermionicProjF_mem_fieldOpIdealSet_or_zero y hy with hfy | hfy
<;> rcases bosonicProjF_mem_fieldOpIdealSet_or_zero y hy with hby | hby
· apply TwoSidedIdeal.add_mem
apply TwoSidedIdeal.add_mem
· /- boson, boson, boson mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(bosonicProjF d) * ↑(bosonicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use bosonicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (bosonicProjF y).1
simp [hby]
2025-02-05 07:22:14 +00:00
· use ↑(bosonicProjF b)
simp
· /- fermion, fermion, boson mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(fermionicProjF d) * ↑(fermionicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use fermionicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (fermionicProjF y).1
simp [hby, hfy]
2025-02-05 07:22:14 +00:00
· use ↑(bosonicProjF b)
simp
apply TwoSidedIdeal.add_mem
· /- boson, fermion, fermion mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(bosonicProjF d) * ↑(fermionicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use bosonicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (fermionicProjF y).1
simp [hby, hfy]
2025-02-05 07:22:14 +00:00
· use ↑(fermionicProjF b)
simp
· /- fermion, boson, fermion mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(fermionicProjF d) * ↑(bosonicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use fermionicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (bosonicProjF y).1
simp [hby, hfy]
2025-02-05 07:22:14 +00:00
· use ↑(fermionicProjF b)
simp
2025-01-29 16:41:10 +00:00
· simp only [hby, ZeroMemClass.coe_zero, mul_zero, zero_mul, zero_add, add_zero]
apply TwoSidedIdeal.add_mem
· /- fermion, fermion, boson mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(fermionicProjF d) * ↑(fermionicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use fermionicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (fermionicProjF y).1
simp [hby, hfy]
2025-02-05 07:22:14 +00:00
· use ↑(bosonicProjF b)
simp
· /- boson, fermion, fermion mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(bosonicProjF d) * ↑(fermionicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use bosonicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (fermionicProjF y).1
simp [hby, hfy]
2025-02-05 07:22:14 +00:00
· use ↑(fermionicProjF b)
simp
2025-01-29 16:41:10 +00:00
· simp only [hfy, ZeroMemClass.coe_zero, mul_zero, zero_mul, add_zero, zero_add]
apply TwoSidedIdeal.add_mem
· /- boson, boson, boson mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(bosonicProjF d) * ↑(bosonicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use bosonicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (bosonicProjF y).1
simp [hby]
2025-02-05 07:22:14 +00:00
· use ↑(bosonicProjF b)
simp
· /- fermion, boson, fermion mem-/
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use ↑(fermionicProjF d) * ↑(bosonicProjF y)
apply And.intro
· apply Set.mem_mul.mpr
2025-02-05 07:22:14 +00:00
use fermionicProjF d
2025-01-29 16:41:10 +00:00
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
2025-02-05 07:22:14 +00:00
use (bosonicProjF y).1
simp [hby, hfy]
2025-02-05 07:22:14 +00:00
· use ↑(fermionicProjF b)
simp
· simp [hfy, hby]
· simp [p]
· intro x y hx hy hpx hpy
2025-01-29 16:41:10 +00:00
simp_all only [map_add, Submodule.coe_add, p]
apply TwoSidedIdeal.add_mem
· exact hpx
· exact hpy
· intro x hx
simp [p]
2025-02-05 07:22:14 +00:00
lemma fermionicProjF_mem_ideal (x : FieldOpFreeAlgebra 𝓕)
2025-02-03 11:42:56 +00:00
(hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
2025-02-05 07:22:14 +00:00
x.fermionicProjF.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
have hb := bosonicProjF_mem_ideal x hx
rw [← ι_eq_zero_iff_mem_ideal] at hx hb ⊢
2025-02-05 07:22:14 +00:00
rw [← bosonicProjF_add_fermionicProjF x] at hx
2025-01-29 16:41:10 +00:00
simp only [map_add] at hx
simp_all
2025-02-05 07:22:14 +00:00
lemma ι_eq_zero_iff_ι_bosonicProjF_fermonicProj_zero (x : FieldOpFreeAlgebra 𝓕) :
ι x = 0 ↔ ι x.bosonicProjF.1 = 0 ∧ ι x.fermionicProjF.1 = 0 := by
apply Iff.intro
· intro h
rw [ι_eq_zero_iff_mem_ideal] at h ⊢
rw [ι_eq_zero_iff_mem_ideal]
apply And.intro
2025-02-05 07:22:14 +00:00
· exact bosonicProjF_mem_ideal x h
· exact fermionicProjF_mem_ideal x h
· intro h
2025-02-05 07:22:14 +00:00
rw [← bosonicProjF_add_fermionicProjF x]
simp_all
2025-01-30 06:21:11 +00:00
/-!
## Constructors
-/
2025-02-10 10:21:57 +00:00
/-- For a field specification `𝓕` and an element `φ` of `𝓕.FieldOp`,
`ofFieldOp φ` is defined as the element of
2025-02-06 13:06:51 +00:00
`𝓕.FieldOpAlgebra` given by `ι (ofFieldOpF φ)`. -/
2025-02-03 11:28:14 +00:00
def ofFieldOp (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (ofFieldOpF φ)
2025-01-30 06:21:11 +00:00
2025-02-03 11:28:14 +00:00
lemma ofFieldOp_eq_ι_ofFieldOpF (φ : 𝓕.FieldOp) : ofFieldOp φ = ι (ofFieldOpF φ) := rfl
2025-01-30 06:21:11 +00:00
2025-02-10 10:21:57 +00:00
/-- For a field specification `𝓕` and a list `φs` of `𝓕.FieldOp`,
`ofFieldOpList φs` is defined as the element of
2025-02-06 13:06:51 +00:00
`𝓕.FieldOpAlgebra` given by `ι (ofFieldOpListF φ)`. -/
2025-02-03 11:28:14 +00:00
def ofFieldOpList (φs : List 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (ofFieldOpListF φs)
2025-01-30 06:21:11 +00:00
2025-02-03 11:28:14 +00:00
lemma ofFieldOpList_eq_ι_ofFieldOpListF (φs : List 𝓕.FieldOp) :
ofFieldOpList φs = ι (ofFieldOpListF φs) := rfl
2025-01-30 06:21:11 +00:00
2025-02-03 11:28:14 +00:00
lemma ofFieldOpList_append (φs ψs : List 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
ofFieldOpList (φs ++ ψs) = ofFieldOpList φs * ofFieldOpList ψs := by
simp only [ofFieldOpList]
rw [ofFieldOpListF_append]
2025-01-30 11:00:25 +00:00
simp
2025-02-03 11:28:14 +00:00
lemma ofFieldOpList_cons (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
2025-01-30 12:45:00 +00:00
ofFieldOpList (φ :: φs) = ofFieldOp φ * ofFieldOpList φs := by
simp only [ofFieldOpList]
rw [ofFieldOpListF_cons]
2025-01-30 12:45:00 +00:00
simp only [map_mul]
rfl
2025-02-03 11:28:14 +00:00
lemma ofFieldOpList_singleton (φ : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
ofFieldOpList [φ] = ofFieldOp φ := by
simp only [ofFieldOpList, ofFieldOp, ofFieldOpListF_singleton]
2025-01-30 11:00:25 +00:00
2025-02-10 10:21:57 +00:00
/-- For a field specification `𝓕` and an element `φ` of `𝓕.CrAnFieldOp`,
`ofCrAnOp φ` is defined as the element of
2025-02-06 13:06:51 +00:00
`𝓕.FieldOpAlgebra` given by `ι (ofCrAnOpF φ)`. -/
def ofCrAnOp (φ : 𝓕.CrAnFieldOp) : 𝓕.FieldOpAlgebra := ι (ofCrAnOpF φ)
2025-01-30 06:21:11 +00:00
lemma ofCrAnOp_eq_ι_ofCrAnOpF (φ : 𝓕.CrAnFieldOp) :
ofCrAnOp φ = ι (ofCrAnOpF φ) := rfl
2025-01-30 06:21:11 +00:00
2025-02-03 11:28:14 +00:00
lemma ofFieldOp_eq_sum (φ : 𝓕.FieldOp) :
ofFieldOp φ = (∑ i : 𝓕.fieldOpToCrAnType φ, ofCrAnOp ⟨φ, i⟩) := by
2025-02-03 11:13:23 +00:00
rw [ofFieldOp, ofFieldOpF]
2025-01-30 11:00:25 +00:00
simp only [map_sum]
rfl
2025-02-10 10:21:57 +00:00
/-- For a field specification `𝓕` and a list `φs` of `𝓕.CrAnFieldOp`,
`ofCrAnList φs` is defined as the element of
2025-02-06 13:06:51 +00:00
`𝓕.FieldOpAlgebra` given by `ι (ofCrAnListF φ)`. -/
def ofCrAnList (φs : List 𝓕.CrAnFieldOp) : 𝓕.FieldOpAlgebra := ι (ofCrAnListF φs)
2025-01-30 06:21:11 +00:00
lemma ofCrAnList_eq_ι_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
ofCrAnList φs = ι (ofCrAnListF φs) := rfl
2025-01-30 06:24:17 +00:00
lemma ofCrAnList_append (φs ψs : List 𝓕.CrAnFieldOp) :
ofCrAnList (φs ++ ψs) = ofCrAnList φs * ofCrAnList ψs := by
simp only [ofCrAnList]
rw [ofCrAnListF_append]
2025-01-30 07:16:19 +00:00
simp
lemma ofCrAnList_singleton (φ : 𝓕.CrAnFieldOp) :
ofCrAnList [φ] = ofCrAnOp φ := by
simp only [ofCrAnList, ofCrAnOp, ofCrAnListF_singleton]
2025-01-30 07:16:19 +00:00
2025-02-03 11:28:14 +00:00
lemma ofFieldOpList_eq_sum (φs : List 𝓕.FieldOp) :
ofFieldOpList φs = ∑ s : CrAnSection φs, ofCrAnList s.1 := by
rw [ofFieldOpList, ofFieldOpListF_sum]
2025-01-30 11:00:25 +00:00
simp only [map_sum]
rfl
2025-02-06 13:06:51 +00:00
remark notation_drop := "In doc-strings we will often drop explicit applications of `ofCrAnOp`,
`ofCrAnList`, `ofFieldOp`, and `ofFieldOpList`"
/-- For a field specification `𝓕`, and an element `φ` of `𝓕.FieldOp`, the
annihilation part of `𝓕.FieldOp` as an element of `𝓕.FieldOpAlgebra`.
2025-02-10 10:21:57 +00:00
Thus for `φ`
- an incoming asymptotic state this is `0`.
- a position based state this is `ofCrAnOp ⟨φ, .create⟩`.
- an outgoing asymptotic state this is `ofCrAnOp ⟨φ, ()⟩`. -/
2025-02-03 11:28:14 +00:00
def anPart (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (anPartF φ)
2025-01-30 06:24:17 +00:00
2025-02-03 11:28:14 +00:00
lemma anPart_eq_ι_anPartF (φ : 𝓕.FieldOp) : anPart φ = ι (anPartF φ) := rfl
2025-01-30 06:24:17 +00:00
2025-01-30 07:16:19 +00:00
@[simp]
2025-02-06 10:06:05 +00:00
lemma anPart_negAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
2025-02-03 11:28:14 +00:00
anPart (FieldOp.inAsymp φ) = 0 := by
2025-01-30 07:16:19 +00:00
simp [anPart, anPartF]
@[simp]
2025-02-06 10:06:05 +00:00
lemma anPart_position (φ : (Σ f, 𝓕.PositionLabel f) × SpaceTime) :
2025-02-03 11:28:14 +00:00
anPart (FieldOp.position φ) =
ofCrAnOp ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩ := by
simp [anPart, ofCrAnOp]
2025-01-30 07:16:19 +00:00
@[simp]
2025-02-06 10:06:05 +00:00
lemma anPart_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
anPart (FieldOp.outAsymp φ) = ofCrAnOp ⟨FieldOp.outAsymp φ, ()⟩ := by
simp [anPart, ofCrAnOp]
2025-01-30 07:16:19 +00:00
2025-02-06 13:06:51 +00:00
/-- For a field specification `𝓕`, and an element `φ` of `𝓕.FieldOp`, the
creation part of `𝓕.FieldOp` as an element of `𝓕.FieldOpAlgebra`.
2025-02-10 10:21:57 +00:00
Thus for `φ`
- an incoming asymptotic state this is `ofCrAnOp ⟨φ, ()⟩`.
- a position based state this is `ofCrAnOp ⟨φ, .create⟩`.
- an outgoing asymptotic state this is `0`. -/
2025-02-03 11:28:14 +00:00
def crPart (φ : 𝓕.FieldOp) : 𝓕.FieldOpAlgebra := ι (crPartF φ)
2025-01-30 06:24:17 +00:00
2025-02-03 11:28:14 +00:00
lemma crPart_eq_ι_crPartF (φ : 𝓕.FieldOp) : crPart φ = ι (crPartF φ) := rfl
2025-01-30 06:24:17 +00:00
2025-01-30 07:16:19 +00:00
@[simp]
2025-02-06 10:06:05 +00:00
lemma crPart_negAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
crPart (FieldOp.inAsymp φ) = ofCrAnOp ⟨FieldOp.inAsymp φ, ()⟩ := by
simp [crPart, ofCrAnOp]
2025-01-30 07:16:19 +00:00
@[simp]
2025-02-06 10:06:05 +00:00
lemma crPart_position (φ : (Σ f, 𝓕.PositionLabel f) × SpaceTime) :
2025-02-03 11:28:14 +00:00
crPart (FieldOp.position φ) =
ofCrAnOp ⟨FieldOp.position φ, CreateAnnihilate.create⟩ := by
simp [crPart, ofCrAnOp]
2025-01-30 07:16:19 +00:00
@[simp]
2025-02-06 10:06:05 +00:00
lemma crPart_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
2025-02-03 11:28:14 +00:00
crPart (FieldOp.outAsymp φ) = 0 := by
2025-01-30 07:16:19 +00:00
simp [crPart]
2025-02-06 13:06:51 +00:00
/-- For field specification `𝓕`, and an element `φ` of `𝓕.FieldOp` the following relation holds:
`ofFieldOp φ = crPart φ + anPart φ`
That is, every field operator splits into its creation part plus its annihilation part.
-/
2025-02-03 11:28:14 +00:00
lemma ofFieldOp_eq_crPart_add_anPart (φ : 𝓕.FieldOp) :
2025-01-30 11:00:25 +00:00
ofFieldOp φ = crPart φ + anPart φ := by
2025-02-03 11:13:23 +00:00
rw [ofFieldOp, crPart, anPart, ofFieldOpF_eq_crPartF_add_anPartF]
2025-01-30 11:00:25 +00:00
simp only [map_add]
2025-01-27 06:20:25 +00:00
end FieldOpAlgebra
end FieldSpecification