PhysLean/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Basic.lean

249 lines
10 KiB
Text
Raw Normal View History

2025-02-05 08:52:14 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldOpFreeAlgebra.NormalOrder
import HepLean.PerturbationTheory.FieldOpAlgebra.SuperCommute
/-!
# Normal Ordering on Field operator algebra
-/
namespace FieldSpecification
open FieldOpFreeAlgebra
open HepLean.List
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
/-!
## Normal order on super-commutators.
The main result of this is
`ι_normalOrderF_superCommuteF_eq_zero_mul`
which states that applying `ι` to the normal order of something containing a super-commutator
is zero.
-/
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero
(φa φa' : 𝓕.CrAnFieldOp) (φs φs' : List 𝓕.CrAnFieldOp) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF * ofCrAnListF φs') = 0 := by
2025-02-05 08:52:14 +00:00
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommuteF_of_create_create φa φa' hφa hφa']
simp
· rw [normalOrderF_superCommuteF_create_annihilate φa φa' hφa hφa' (ofCrAnListF φs)
(ofCrAnListF φs')]
simp
· rw [normalOrderF_superCommuteF_annihilate_create φa' φa hφa' hφa (ofCrAnListF φs)
(ofCrAnListF φs')]
simp
· rw [normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul,
ι_superCommuteF_of_annihilate_annihilate φa φa' hφa hφa']
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero
(φa φa' : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp)
(a : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF * a) = 0 := by
2025-02-05 08:52:14 +00:00
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
2025-02-13 10:44:15 +00:00
mulLinearMap (ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF) = 0 := by
2025-02-05 08:52:14 +00:00
apply ofCrAnListFBasis.ext
intro l
simp only [FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero φa φa' φs l
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
2025-02-13 10:44:15 +00:00
mulLinearMap ((ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF))) a = 0
2025-02-05 08:52:14 +00:00
rw [hf]
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnOpF_eq_zero_mul (φa φa' : 𝓕.CrAnFieldOp)
(a b : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φa']ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
rw [mul_assoc]
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
2025-02-13 10:44:15 +00:00
([ofCrAnOpF φa, ofCrAnOpF φa']ₛF * b)) a = 0
2025-02-05 08:52:14 +00:00
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
2025-02-13 10:44:15 +00:00
([ofCrAnOpF φa, ofCrAnOpF φa']ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
apply ofCrAnListFBasis.ext
intro l
simp only [mulLinearMap, FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
rw [← mul_assoc]
exact ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero φa φa' _ _
rw [hf]
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnOpF_ofCrAnListF_eq_zero_mul (φa : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnListF φs]ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum]
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnListF_singleton]
rw [ι_normalOrderF_superCommuteF_ofCrAnOpF_eq_zero_mul]
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnOpF_eq_zero_mul (φa : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [ofCrAnListF φs, ofCrAnOpF φa]ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF_symm, ofCrAnListF_singleton]
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [ι_normalOrderF_superCommuteF_ofCrAnOpF_ofCrAnListF_eq_zero_mul]
simp
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul
(φs φs' : List 𝓕.CrAnFieldOp) (a b : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [ofCrAnListF φs, ofCrAnListF φs']ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
rw [superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum, Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnOpF_eq_zero_mul]
lemma ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul
(φs : List 𝓕.CrAnFieldOp)
(a b c : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [ofCrAnListF φs, c]ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) c = 0
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnListF φs)) = 0 := by
apply ofCrAnListFBasis.ext
intro φs'
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_ofCrAnListF_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul
2025-02-13 10:44:15 +00:00
(a b c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) d = 0
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
apply ofCrAnListFBasis.ext
intro φs
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrderF_superCommuteF_ofCrAnListF_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ([d, c]ₛF * b) = 0 := by
2025-02-05 08:52:14 +00:00
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 b c d]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_left (a c d : 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [d, c]ₛF) = 0 := by
2025-02-05 08:52:14 +00:00
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a 1 c d]
simp
@[simp]
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.FieldOpFreeAlgebra) :
2025-02-13 10:44:15 +00:00
ι 𝓝ᶠ(a * [d, c]ₛF * b1 * b2) = 0 := by
2025-02-05 08:52:14 +00:00
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a (b1 * b2) c d]
congr 2
noncomm_ring
@[simp]
2025-02-13 10:44:15 +00:00
lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ([d, c]ₛF) = 0 := by
2025-02-05 08:52:14 +00:00
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 1 c d]
simp
/-!
## Defining normal order for `FiedOpAlgebra`.
-/
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.FieldOpFreeAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕)
(h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]
lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) :
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_normalOrderF_zero_of_mem_ideal (a - b) h
2025-02-07 15:43:59 +00:00
/-- For a field specification `𝓕`, `normalOrder` is the linear map
2025-02-06 14:10:45 +00:00
`FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕`
2025-02-13 09:48:19 +00:00
defined as the descent of `ι ∘ₗ normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕`
2025-02-10 10:21:57 +00:00
from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`.
2025-02-13 09:48:19 +00:00
This descent exists because `ι ∘ₗ normalOrderF` is well-defined on equivalence classes.
2025-02-06 14:10:45 +00:00
2025-02-10 10:21:57 +00:00
The notation `𝓝(a)` is used for `normalOrder a` for `a` an element of `FieldOpAlgebra 𝓕`. -/
2025-02-05 08:52:14 +00:00
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ normalOrderF) ι_normalOrderF_eq_of_equiv
map_add' x y := by
obtain ⟨x, rfl⟩ := ι_surjective x
obtain ⟨y, rfl⟩ := ι_surjective y
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, rfl⟩ := ι_surjective y
rw [← map_smul, ι_apply, ι_apply]
simp
@[inherit_doc normalOrder]
scoped[FieldSpecification.FieldOpAlgebra] notation "𝓝(" a ")" => normalOrder a
end FieldOpAlgebra
end FieldSpecification