PhysLean/HepLean/Tensors/Tree/NodeIdentities/ContrContr.lean

299 lines
12 KiB
Text
Raw Normal View History

2024-10-18 16:08:17 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Basic
/-!
## Commutativity of two contractions
The order of two contractions can be swapped, once the indices have been
accordingly adjusted.
2024-10-19 08:33:49 +00:00
2024-10-18 16:08:17 +00:00
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
namespace TensorTree
variable {S : TensorSpecies}
2024-10-18 16:08:17 +00:00
2024-10-19 10:50:38 +00:00
/-- A structure containing two pairs of indices (i, j) and (k, l) to be sequentially
contracted in a tensor. -/
2024-10-18 16:08:17 +00:00
structure ContrQuartet {n : } (c : Fin n.succ.succ.succ.succ → S.C) where
2024-10-19 10:50:38 +00:00
/-- The first index of the first pair to be contracted. -/
2024-10-18 16:08:17 +00:00
i : Fin n.succ.succ.succ.succ
2024-10-19 10:50:38 +00:00
/-- The second index of the first pair to be contracted. -/
2024-10-18 16:08:17 +00:00
j : Fin n.succ.succ.succ
2024-10-19 10:50:38 +00:00
/-- The first index of the second pair to be contracted. -/
2024-10-18 16:08:17 +00:00
k : Fin n.succ.succ
2024-10-19 10:50:38 +00:00
/-- The second index of the second pair to be contracted. -/
2024-10-18 16:08:17 +00:00
l : Fin n.succ
2024-10-19 10:50:38 +00:00
/-- The condition on the first pair of indices permitting their contraction. -/
2024-10-18 16:08:17 +00:00
hij : c (i.succAbove j) = S.τ (c i)
2024-10-19 10:50:38 +00:00
/-- The condition on the second pair of indices permitting their contraction. -/
2024-10-18 16:08:17 +00:00
hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) = S.τ ((c ∘ i.succAbove ∘ j.succAbove) k)
namespace ContrQuartet
variable {n : } {c : Fin n.succ.succ.succ.succ → S.C} (q : ContrQuartet c)
2024-10-19 10:50:38 +00:00
/-- On swapping the order of contraction (notionally `(i, j) - (k, l)` vs `(k, l) - (i, j)`), this
is the new `i` index. -/
2024-10-18 16:08:17 +00:00
def swapI : Fin n.succ.succ.succ.succ := q.i.succAbove (q.j.succAbove q.k)
2024-10-19 10:50:38 +00:00
/-- On swapping the order of contraction (notionally `(i, j) - (k, l)` vs `(k, l) - (i, j)`), this
is the new `j` index. -/
2024-10-19 08:33:49 +00:00
def swapJ : Fin n.succ.succ.succ := (predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i).succAbove
((predAboveI (q.j.succAbove q.k) q.j).succAbove q.l)
2024-10-18 16:08:17 +00:00
2024-10-19 10:50:38 +00:00
/-- On swapping the order of contraction (notionally `(i, j) - (k, l)` vs `(k, l) - (i, j)`), this
is the new `k` index. -/
2024-10-19 09:19:29 +00:00
def swapK : Fin n.succ.succ := predAboveI
2024-10-18 16:08:17 +00:00
((predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i).succAbove
((predAboveI (q.j.succAbove q.k) q.j).succAbove q.l))
(predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i)
2024-10-19 10:50:38 +00:00
/-- On swapping the order of contraction (notionally `(i, j) - (k, l)` vs `(k, l) - (i, j)`), this
is the new `l` index. -/
2024-10-19 09:19:29 +00:00
def swapL : Fin n.succ := predAboveI ((predAboveI (q.j.succAbove q.k) q.j).succAbove q.l)
2024-10-19 08:33:49 +00:00
(predAboveI (q.j.succAbove q.k) q.j)
2024-10-18 16:08:17 +00:00
2024-10-19 08:33:49 +00:00
lemma swap_map_eq (x : Fin n) : (q.swapI.succAbove (q.swapJ.succAbove
(q.swapK.succAbove (q.swapL.succAbove x)))) =
(q.i.succAbove (q.j.succAbove (q.k.succAbove (q.l.succAbove x)))) := by
rw [succAbove_succAbove_predAboveI q.j q.k]
rw [succAbove_succAbove_predAboveI q.i]
apply congrArg
rw [succAbove_succAbove_predAboveI (predAboveI (q.j.succAbove q.k) q.j)]
rw [succAbove_succAbove_predAboveI (predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i)]
2024-10-19 10:34:30 +00:00
rfl
2024-10-18 16:08:17 +00:00
@[simp]
lemma swapI_neq_i : ¬ q.swapI = q.i := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, swapI]
2024-10-18 16:08:17 +00:00
exact Fin.succAbove_ne q.i (q.j.succAbove q.k)
@[simp]
lemma swapI_neq_succAbove : ¬ q.swapI = q.i.succAbove q.j := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, swapI]
2024-10-18 16:08:17 +00:00
apply Function.Injective.ne Fin.succAbove_right_injective
exact Fin.succAbove_ne q.j q.k
@[simp]
2024-10-19 09:47:23 +00:00
lemma swapI_neq_i_j_k_l_succAbove :
¬ q.swapI = q.i.succAbove (q.j.succAbove (q.k.succAbove q.l)) := by
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, swapI]
2024-10-18 16:08:17 +00:00
apply Function.Injective.ne Fin.succAbove_right_injective
apply Function.Injective.ne Fin.succAbove_right_injective
exact Fin.ne_succAbove q.k q.l
2024-10-19 08:33:49 +00:00
lemma swapJ_swapI_succAbove : q.swapI.succAbove q.swapJ = q.i.succAbove
(q.j.succAbove (q.k.succAbove q.l)) := by
2024-10-19 09:19:29 +00:00
simp only [swapI, swapJ]
2024-10-19 08:33:49 +00:00
rw [← succAbove_succAbove_predAboveI]
rw [← succAbove_succAbove_predAboveI]
2024-10-18 16:08:17 +00:00
2024-10-19 08:33:49 +00:00
lemma swapJ_eq_swapI_predAbove : q.swapJ = predAboveI q.swapI (q.i.succAbove
(q.j.succAbove (q.k.succAbove q.l))) := by
rw [predAboveI_eq_iff]
exact swapJ_swapI_succAbove q
exact swapI_neq_i_j_k_l_succAbove q
2024-10-18 16:08:17 +00:00
@[simp]
2024-10-19 09:19:29 +00:00
lemma swapK_swapJ_succAbove : (q.swapJ.succAbove q.swapK) = predAboveI q.swapI q.i := by
2024-10-19 08:33:49 +00:00
rw [swapJ, swapK]
2024-10-18 16:08:17 +00:00
rw [succsAbove_predAboveI]
2024-10-19 08:33:49 +00:00
rfl
exact Fin.succAbove_ne (predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i)
((predAboveI (q.j.succAbove q.k) q.j).succAbove q.l)
2024-10-18 16:08:17 +00:00
@[simp]
2024-10-19 08:33:49 +00:00
lemma swapK_swapJ_swapI_succAbove : (q.swapI).succAbove (predAboveI q.swapI q.i) = q.i := by
2024-10-18 16:08:17 +00:00
rw [succsAbove_predAboveI]
simp
@[simp]
2024-10-19 09:47:23 +00:00
lemma swapL_swapK_swapJ_swapI_succAbove :
q.swapI.succAbove (q.swapJ.succAbove (q.swapK.succAbove q.swapL)) = q.i.succAbove q.j := by
2024-10-19 08:33:49 +00:00
rw [swapJ, swapK]
rw [← succAbove_succAbove_predAboveI]
rw [swapI]
rw [← succAbove_succAbove_predAboveI]
apply congrArg
rw [swapL]
rw [succsAbove_predAboveI, succsAbove_predAboveI]
2024-10-18 16:08:17 +00:00
exact Fin.succAbove_ne q.j q.k
2024-10-19 08:33:49 +00:00
exact Fin.succAbove_ne (predAboveI (q.j.succAbove q.k) q.j) q.l
2024-10-18 16:08:17 +00:00
2024-10-19 10:50:38 +00:00
/-- The `ContrQuartet` corresponding to swapping the order of contraction
(notionally `(i, j) - (k, l)` vs `(k, l) - (i, j)`). -/
2024-10-18 16:08:17 +00:00
def swap : ContrQuartet c where
i := q.swapI
j := q.swapJ
k := q.swapK
l := q.swapL
hij := by
2024-10-19 08:33:49 +00:00
rw [swapJ_swapI_succAbove, swapI]
simpa using q.hkl
2024-10-18 16:08:17 +00:00
hkl := by
simpa using q.hij
noncomputable section
2024-10-19 10:50:38 +00:00
/-- The contraction map for the first pair of indices. -/
2024-10-18 16:08:17 +00:00
def contrMapFst := S.contrMap c q.i q.j q.hij
2024-10-19 10:50:38 +00:00
/-- The contractoin map for the second pair of indices. -/
2024-10-18 16:08:17 +00:00
def contrMapSnd := S.contrMap (c ∘ q.i.succAbove ∘ q.j.succAbove) q.k q.l q.hkl
2024-10-19 10:50:38 +00:00
/-- The homomorphism one must apply on swapping the order of contractions. -/
2024-10-19 09:47:23 +00:00
def contrSwapHom : (OverColor.mk ((c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbove) ∘
q.swap.k.succAbove ∘ q.swap.l.succAbove)) ⟶
(OverColor.mk fun x => c (q.i.succAbove (q.j.succAbove (q.k.succAbove (q.l.succAbove x))))) :=
2024-10-19 08:33:49 +00:00
(mkIso (funext fun x => congrArg c (swap_map_eq q x))).hom
2024-10-19 09:47:23 +00:00
lemma contrSwapHom_contrMapSnd_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
2024-10-19 08:33:49 +00:00
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
2024-10-19 09:47:23 +00:00
(q.swap.contrMapSnd.hom ((PiTensorProduct.tprod S.k) fun k =>
x (q.swap.i.succAbove (q.swap.j.succAbove k)))) = ((S.castToField
2024-10-19 09:19:29 +00:00
((S.contr.app { as := (c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbove) q.swap.k }).hom
(x (q.swap.i.succAbove (q.swap.j.succAbove q.swap.k)) ⊗ₜ[S.k]
(S.FDiscrete.map (Discrete.eqToHom q.swap.hkl)).hom
(x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove q.swap.l))))))) •
((lift.obj S.FDiscrete).map q.contrSwapHom).hom ((PiTensorProduct.tprod S.k) fun k =>
x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove (q.swap.l.succAbove k)))))) := by
rw [contrMapSnd,TensorSpecies.contrMap_tprod]
2024-10-19 08:33:49 +00:00
change ((lift.obj S.FDiscrete).map q.contrSwapHom).hom
(_ • ((PiTensorProduct.tprod S.k) fun k =>
2024-10-19 08:49:26 +00:00
x (q.swap.i.succAbove (q.swap.j.succAbove
(q.swap.k.succAbove (q.swap.l.succAbove k)))) :
S.F.obj (OverColor.mk ((c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbove) ∘
q.swap.k.succAbove ∘ q.swap.l.succAbove)))) = _
2024-10-19 08:33:49 +00:00
rw [map_smul]
rfl
2024-10-19 09:47:23 +00:00
lemma contrSwapHom_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
((PiTensorProduct.tprod S.k)
fun k => x (q.i.succAbove (q.j.succAbove (q.k.succAbove (q.l.succAbove k))))) =
2024-10-19 08:33:49 +00:00
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
((PiTensorProduct.tprod S.k) fun k =>
x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove (q.swap.l.succAbove k))))) := by
rw [lift.map_tprod]
apply congrArg
funext i
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, mk_hom, Function.comp_apply]
2024-10-19 08:33:49 +00:00
rw [lift.discreteFunctorMapEqIso]
2024-10-19 09:19:29 +00:00
change _ = (S.FDiscrete.map (Discrete.eqToIso _).hom).hom _
2024-10-19 08:33:49 +00:00
have h1' {a b : Fin n.succ.succ.succ.succ} (h : a = b) :
2024-10-19 09:19:29 +00:00
x b = (S.FDiscrete.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
2024-10-19 08:33:49 +00:00
subst h
simp
exact h1' (q.swap_map_eq i)
lemma contrMapFst_contrMapSnd_swap :
q.contrMapFst ≫ q.contrMapSnd = q.swap.contrMapFst ≫ q.swap.contrMapSnd ≫
S.F.map q.contrSwapHom := by
ext x
change q.contrMapSnd.hom (q.contrMapFst.hom x) = (S.F.map q.contrSwapHom).hom
(q.swap.contrMapSnd.hom (q.swap.contrMapFst.hom x))
refine PiTensorProduct.induction_on' x (fun r x => ?_) <| fun x y hx hy => by
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
Function.comp_apply, hy]
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
2024-10-19 08:33:49 +00:00
map_smul]
apply congrArg
rw [contrMapFst, contrMapFst]
change q.contrMapSnd.hom ((S.contrMap c q.i q.j _).hom ((PiTensorProduct.tprod S.k) x)) =
(S.F.map q.contrSwapHom).hom
2024-10-19 09:47:23 +00:00
(q.swap.contrMapSnd.hom ((S.contrMap c q.swap.i q.swap.j _).hom
((PiTensorProduct.tprod S.k) x)))
rw [TensorSpecies.contrMap_tprod, TensorSpecies.contrMap_tprod]
2024-10-19 08:33:49 +00:00
simp only [Nat.succ_eq_add_one, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, map_smul]
change _ •
q.contrMapSnd.hom ((PiTensorProduct.tprod S.k) fun k => x (q.i.succAbove (q.j.succAbove k))) =
S.castToField
_ •
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
2024-10-19 09:47:23 +00:00
(q.swap.contrMapSnd.hom ((PiTensorProduct.tprod S.k)
fun k => x (q.swap.i.succAbove (q.swap.j.succAbove k))))
rw [contrMapSnd, TensorSpecies.contrMap_tprod, q.contrSwapHom_contrMapSnd_tprod]
2024-10-19 08:33:49 +00:00
rw [smul_smul, smul_smul]
congr 1
/- The contractions. -/
· nth_rewrite 1 [mul_comm]
congr 1
· congr 3
2024-10-21 13:40:23 +00:00
have h1' {a b d: Fin n.succ.succ.succ.succ} (hbd : b = d) (h : c d = S.τ (c a))
2024-10-19 09:47:23 +00:00
(h' : c b = S.τ (c a)) :
2024-10-19 09:19:29 +00:00
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
2024-10-19 08:33:49 +00:00
subst hbd
rfl
refine h1' ?_ ?_ ?_
erw [swapJ_swapI_succAbove]
rfl
· congr 1
2024-10-19 09:19:29 +00:00
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
Nat.succ_eq_add_one, Function.comp_apply, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj,
Discrete.functor_obj_eq_as]
2024-10-19 08:33:49 +00:00
have h' {a a' b b' : Fin n.succ.succ.succ.succ} (hab : c b = S.τ (c a))
2024-10-19 09:19:29 +00:00
(hab' : c b' = S.τ (c a')) (ha : a = a') (hb : b= b') :
(S.contr.app { as := c a }).hom
(x a ⊗ₜ[S.k] (S.FDiscrete.map (Discrete.eqToHom hab)).hom (x b)) =
(S.contr.app { as := c a' }).hom (x a' ⊗ₜ[S.k]
(S.FDiscrete.map (Discrete.eqToHom hab')).hom (x b')) := by
2024-10-19 08:33:49 +00:00
subst ha hb
rfl
apply h'
· simp only [Nat.succ_eq_add_one, swap, swapK_swapJ_succAbove, swapK_swapJ_swapI_succAbove]
· simp only [Nat.succ_eq_add_one, swap, Function.comp_apply,
swapL_swapK_swapJ_swapI_succAbove]
/- The tensor-/
· exact q.contrSwapHom_tprod _
lemma contr_contr (t : TensorTree S c) :
2024-10-19 09:47:23 +00:00
(contr q.k q.l q.hkl (contr q.i q.j q.hij t)).tensor = (perm q.contrSwapHom
(contr q.swapK q.swapL q.swap.hkl (contr q.swapI q.swapJ q.swap.hij t))).tensor := by
2024-10-19 08:33:49 +00:00
simp only [contr_tensor, perm_tensor]
trans (q.contrMapFst ≫ q.contrMapSnd).hom t.tensor
simp only [Nat.succ_eq_add_one, contrMapFst, contrMapSnd, Action.comp_hom, ModuleCat.coe_comp,
Function.comp_apply]
rw [contrMapFst_contrMapSnd_swap]
simp only [Nat.succ_eq_add_one, contrMapFst, contrMapSnd, Action.comp_hom, ModuleCat.coe_comp,
Function.comp_apply, swap]
apply congrArg
apply congrArg
apply congrArg
rfl
2024-10-18 16:08:17 +00:00
end
end ContrQuartet
2024-10-19 08:33:49 +00:00
/-- Contraction nodes commute on adjusting indices. -/
theorem contr_contr {n : } {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
2024-10-19 08:49:26 +00:00
(hij : c (i.succAbove j) = S.τ (c i)) (hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) =
S.τ ((c ∘ i.succAbove ∘ j.succAbove) k))
2024-10-19 09:19:29 +00:00
(t : TensorTree S c) :
2024-10-19 08:33:49 +00:00
(contr k l hkl (contr i j hij t)).tensor =
(perm (ContrQuartet.mk i j k l hij hkl).contrSwapHom
(contr (ContrQuartet.mk i j k l hij hkl).swapK (ContrQuartet.mk i j k l hij hkl).swapL
2024-10-19 08:49:26 +00:00
(ContrQuartet.mk i j k l hij hkl).swap.hkl (contr (ContrQuartet.mk i j k l hij hkl).swapI
2024-10-19 09:47:23 +00:00
(ContrQuartet.mk i j k l hij hkl).swapJ
2024-10-21 13:40:23 +00:00
(ContrQuartet.mk i j k l hij hkl).swap.hij t))).tensor :=
(ContrQuartet.mk i j k l hij hkl).contr_contr t
2024-10-18 16:08:17 +00:00
2024-10-19 08:33:49 +00:00
end TensorTree