PhysLean/HepLean/Mathematics/SO3/Basic.lean

233 lines
7.4 KiB
Text
Raw Normal View History

2024-05-20 16:20:26 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.UnitaryGroup
import Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup
import Mathlib.Data.Complex.Exponential
2024-05-22 16:50:53 -04:00
import Mathlib.LinearAlgebra.Eigenspace.Basic
2024-06-25 07:06:32 -04:00
import Mathlib.Analysis.InnerProductSpace.PiL2
2024-05-20 16:20:26 -04:00
/-!
2024-05-22 13:34:53 -04:00
# The group SO(3)
2024-05-20 16:20:26 -04:00
-/
namespace GroupTheory
open Matrix
2024-05-22 13:34:53 -04:00
/-- The group of `3×3` real matrices with determinant 1 and `A * Aᵀ = 1`. -/
2024-05-20 16:20:26 -04:00
def SO3 : Type := {A : Matrix (Fin 3) (Fin 3) // A.det = 1 ∧ A * Aᵀ = 1}
2024-05-22 13:34:53 -04:00
@[simps mul_coe one_coe inv div]
2024-05-20 16:20:26 -04:00
instance SO3Group : Group SO3 where
mul A B := ⟨A.1 * B.1,
by
simp only [det_mul, A.2.1, B.2.1, mul_one],
by
simp [A.2.2, B.2.2, ← Matrix.mul_assoc, Matrix.mul_assoc]⟩
mul_assoc A B C := by
apply Subtype.eq
exact Matrix.mul_assoc A.1 B.1 C.1
one := ⟨1, by simp, by simp⟩
one_mul A := by
apply Subtype.eq
exact Matrix.one_mul A.1
mul_one A := by
apply Subtype.eq
exact Matrix.mul_one A.1
inv A := ⟨A.1ᵀ, by simp [A.2], by simp [mul_eq_one_comm.mpr A.2.2]⟩
mul_left_inv A := by
apply Subtype.eq
exact mul_eq_one_comm.mpr A.2.2
2024-05-22 13:34:53 -04:00
/-- Notation for the group `SO3`. -/
2024-05-20 16:20:26 -04:00
scoped[GroupTheory] notation (name := SO3_notation) "SO(3)" => SO3
/-- SO3 has the subtype topology. -/
instance : TopologicalSpace SO3 := instTopologicalSpaceSubtype
namespace SO3
lemma coe_inv (A : SO3) : (A⁻¹).1 = A.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
exact mul_eq_one_comm.mpr A.2.2
2024-05-22 13:34:53 -04:00
/-- The inclusion of `SO(3)` into `GL (Fin 3) `. -/
def toGL : SO(3) →* GL (Fin 3) where
2024-05-20 16:20:26 -04:00
toFun A := ⟨A.1, (A⁻¹).1, A.2.2, mul_eq_one_comm.mpr A.2.2⟩
map_one' := by
simp
rfl
map_mul' x y := by
2024-05-22 13:34:53 -04:00
simp only [_root_.mul_inv_rev, coe_inv]
2024-05-20 16:20:26 -04:00
ext
rfl
lemma subtype_val_eq_toGL : (Subtype.val : SO3 → Matrix (Fin 3) (Fin 3) ) =
Units.val ∘ toGL.toFun := by
ext A
rfl
lemma toGL_injective : Function.Injective toGL := by
intro A B h
apply Subtype.eq
rw [@Units.ext_iff] at h
simpa using h
2024-05-22 13:34:53 -04:00
/-- The inclusion of `SO(3)` into the monoid of matrices times the opposite of
the monoid of matrices. -/
2024-05-20 16:20:26 -04:00
@[simps!]
def toProd : SO(3) →* (Matrix (Fin 3) (Fin 3) ) × (Matrix (Fin 3) (Fin 3) )ᵐᵒᵖ :=
MonoidHom.comp (Units.embedProduct _) toGL
lemma toProd_eq_transpose : toProd A = (A.1, ⟨A.1ᵀ⟩) := by
simp only [toProd, Units.embedProduct, coe_units_inv, MulOpposite.op_inv, toGL, coe_inv,
MonoidHom.coe_comp, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply, Prod.mk.injEq,
true_and]
refine MulOpposite.unop_inj.mp ?_
simp only [MulOpposite.unop_inv, MulOpposite.unop_op]
rw [← coe_inv]
rfl
lemma toProd_injective : Function.Injective toProd := by
intro A B h
rw [toProd_eq_transpose, toProd_eq_transpose] at h
rw [@Prod.mk.inj_iff] at h
apply Subtype.eq
exact h.1
lemma toProd_continuous : Continuous toProd := by
change Continuous (fun A => (A.1, ⟨A.1ᵀ⟩))
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
exact continuous_iff_le_induced.mpr fun U a => a
refine Continuous.comp' ?_ ?_
exact MulOpposite.continuous_op
refine Continuous.matrix_transpose ?_
exact continuous_iff_le_induced.mpr fun U a => a
2024-05-22 13:34:53 -04:00
/-- The embedding of `SO(3)` into the monoid of matrices times the opposite of
the monoid of matrices. -/
lemma toProd_embedding : Embedding toProd where
2024-05-20 16:20:26 -04:00
inj := toProd_injective
induced := by
refine (inducing_iff ⇑toProd).mp ?_
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
2024-05-22 13:34:53 -04:00
/-- The embedding of `SO(3)` into `GL (Fin 3) `. -/
lemma toGL_embedding : Embedding toGL.toFun where
2024-05-20 16:20:26 -04:00
inj := toGL_injective
induced := by
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
intro s
2024-05-22 13:34:53 -04:00
rw [TopologicalSpace.ext_iff.mp toProd_embedding.induced s ]
2024-05-20 16:20:26 -04:00
rw [isOpen_induced_iff, isOpen_induced_iff]
apply Iff.intro ?_ ?_
· intro h
obtain ⟨U, hU1, hU2⟩ := h
rw [isOpen_induced_iff] at hU1
obtain ⟨V, hV1, hV2⟩ := hU1
use V
simp [hV1]
rw [← hU2, ← hV2]
rfl
· intro h
obtain ⟨U, hU1, hU2⟩ := h
let t := (Units.embedProduct _) ⁻¹' U
use t
apply And.intro (isOpen_induced hU1)
exact hU2
instance : TopologicalGroup SO(3) :=
2024-05-22 13:34:53 -04:00
Inducing.topologicalGroup toGL toGL_embedding.toInducing
2024-05-20 16:20:26 -04:00
2024-05-21 11:31:57 -04:00
lemma det_minus_id (A : SO(3)) : det (A.1 - 1) = 0 := by
have h1 : det (A.1 - 1) = - det (A.1 - 1) :=
calc
det (A.1 - 1) = det (A.1 - A.1 * A.1ᵀ) := by simp [A.2.2]
_ = det A.1 * det (1 - A.1ᵀ) := by rw [← det_mul, mul_sub, mul_one]
_ = det (1 - A.1ᵀ):= by simp [A.2.1]
_ = det (1 - A.1ᵀ)ᵀ := by rw [det_transpose]
_ = det (1 - A.1) := by simp
_ = det (- (A.1 - 1)) := by simp
_ = (- 1) ^ 3 * det (A.1 - 1) := by simp only [det_neg, Fintype.card_fin, neg_mul, one_mul]
_ = - det (A.1 - 1) := by simp [pow_three]
simpa using h1
2024-05-20 16:20:26 -04:00
2024-05-22 09:18:12 -04:00
@[simp]
lemma det_id_minus (A : SO(3)) : det (1 - A.1) = 0 := by
have h1 : det (1 - A.1) = - det (A.1 - 1) := by
calc
det (1 - A.1) = det (- (A.1 - 1)) := by simp
_ = (- 1) ^ 3 * det (A.1 - 1) := by simp only [det_neg, Fintype.card_fin, neg_mul, one_mul]
_ = - det (A.1 - 1) := by simp [pow_three]
rw [h1, det_minus_id]
simp only [neg_zero]
2024-05-20 16:20:26 -04:00
2024-05-22 09:18:12 -04:00
@[simp]
lemma one_in_spectrum (A : SO(3)) : 1 ∈ spectrum (A.1) := by
rw [spectrum.mem_iff]
2024-05-22 13:34:53 -04:00
simp only [_root_.map_one]
2024-05-22 09:18:12 -04:00
rw [Matrix.isUnit_iff_isUnit_det]
simp
2024-05-20 16:20:26 -04:00
2024-05-22 09:18:12 -04:00
noncomputable section action
open Module
2024-05-22 13:34:53 -04:00
/-- The endomorphism of `EuclideanSpace (Fin 3)` associated to a element of `SO(3)`. -/
2024-05-22 09:18:12 -04:00
@[simps!]
def toEnd (A : SO(3)) : End (EuclideanSpace (Fin 3)) :=
Matrix.toLin (EuclideanSpace.basisFun (Fin 3) ).toBasis
(EuclideanSpace.basisFun (Fin 3) ).toBasis A.1
lemma one_is_eigenvalue (A : SO(3)) : A.toEnd.HasEigenvalue 1 := by
rw [End.hasEigenvalue_iff_mem_spectrum]
erw [AlgEquiv.spectrum_eq (Matrix.toLinAlgEquiv (EuclideanSpace.basisFun (Fin 3) ).toBasis ) A.1]
exact one_in_spectrum A
lemma exists_stationary_vec (A : SO(3)) :
∃ (v : EuclideanSpace (Fin 3)),
Orthonormal (({0} : Set (Fin 3)).restrict (fun _ => v ))
∧ A.toEnd v = v := by
obtain ⟨v, hv⟩ := End.HasEigenvalue.exists_hasEigenvector $ one_is_eigenvalue A
have hvn : ‖v‖ ≠ 0 := norm_ne_zero_iff.mpr hv.2
use (1/‖v‖) • v
apply And.intro
rw [@orthonormal_iff_ite]
intro v1 v2
have hv1 := v1.2
have hv2 := v2.2
simp_all only [one_div, Set.mem_singleton_iff]
have hveq : v1 = v2 := by
rw [@Subtype.ext_iff]
simp_all only
subst hveq
simp only [Set.restrict_apply, PiLp.smul_apply, smul_eq_mul,
_root_.map_mul, map_inv₀, conj_trivial, ↓reduceIte]
rw [inner_smul_right, inner_smul_left, real_inner_self_eq_norm_sq v]
field_simp
ring
rw [_root_.map_smul, End.mem_eigenspace_iff.mp hv.1 ]
simp
lemma exists_basis_preserved (A : SO(3)) :
∃ (b : OrthonormalBasis (Fin 3) (EuclideanSpace (Fin 3))), A.toEnd (b 0) = b 0 := by
obtain ⟨v, hv⟩ := exists_stationary_vec A
have h3 : FiniteDimensional.finrank (EuclideanSpace (Fin 3)) = Fintype.card (Fin 3) := by
simp_all only [toEnd_apply, finrank_euclideanSpace, Fintype.card_fin]
obtain ⟨b, hb⟩ := Orthonormal.exists_orthonormalBasis_extension_of_card_eq h3 hv.1
simp at hb
use b
rw [hb, hv.2]
end action
2024-05-20 16:20:26 -04:00
end SO3
end GroupTheory