PhysLean/HepLean/Tensors/Tree/NodeIdentities/PermContr.lean

257 lines
13 KiB
Text
Raw Normal View History

2024-10-18 16:08:17 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Basic
/-!
# The commutativity of Permutations and contractions.
There is very likely a better way to do this using `TensorStruct.contrMap_tprod`.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
namespace TensorStruct
noncomputable section
variable (S : TensorStruct)
lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ)).hom ≫ (S.contrFin1Fin1 c1 i j h).hom.hom
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
2024-10-19 08:49:26 +00:00
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom
2024-10-18 16:08:17 +00:00
:= by
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
2024-10-19 08:49:26 +00:00
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
2024-10-19 09:19:29 +00:00
erw [← CategoryTheory.Iso.eq_comp_inv]
2024-10-18 16:08:17 +00:00
rw [CategoryTheory.Category.assoc]
2024-10-19 09:19:29 +00:00
erw [← CategoryTheory.Iso.inv_comp_eq]
2024-10-18 16:08:17 +00:00
ext1
apply TensorProduct.ext'
2024-10-19 08:49:26 +00:00
intro x y
2024-10-18 16:08:17 +00:00
simp only [Nat.succ_eq_add_one, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp,
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
2024-10-19 09:19:29 +00:00
(eqToHom (by
simp only [Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
extractOne_homToEquiv, Fin.isValue, mk_hom, finExtractTwo_symm_inl_inr_apply,
Discrete.mk.injEq]
erw [perm_contr_cond S h σ]))).hom y))
2024-10-18 16:08:17 +00:00
· apply congrArg
2024-10-19 08:49:26 +00:00
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c = d) (h : a = d) : b = c := by
rw [← hab, hcd]
2024-10-18 16:08:17 +00:00
exact h
have h1 := S.contrFin1Fin1_inv_tmul c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
2024-10-19 08:49:26 +00:00
(perm_contr_cond S h σ) x y
2024-10-18 16:08:17 +00:00
refine h1' ?_ ?_ h1
congr
apply congrArg
funext x
match x with
| Sum.inl 0 => rfl
| Sum.inr 0 => rfl
change _ = (S.contrFin1Fin1 c1 i j h).inv.hom
((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
(S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
rw [contrFin1Fin1_inv_tmul]
2024-10-19 08:49:26 +00:00
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
2024-10-18 16:08:17 +00:00
rw [lift.map_tprod]
apply congrArg
funext i
match i with
| Sum.inl 0 => rfl
| Sum.inr 0 =>
2024-10-19 09:19:29 +00:00
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom,
Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as,
LinearEquiv.ofLinear_apply]
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
2024-10-18 16:08:17 +00:00
rw [← Functor.map_comp, ← Functor.map_comp]
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
eqToHom_trans]
exact congrArg (λ f => Action.Hom.hom f) h1
lemma contrIso_comm_aux_1 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom =
2024-10-19 09:19:29 +00:00
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i)
2024-10-18 16:08:17 +00:00
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom
2024-10-19 09:19:29 +00:00
≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom := by
2024-10-18 16:08:17 +00:00
ext X
change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _
rw [← Functor.map_comp, ← Functor.map_comp]
erw [extractTwo_finExtractTwo]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Functor.map_comp, Action.comp_hom,
ModuleCat.coe_comp, Function.comp_apply]
rfl
lemma contrIso_comm_aux_2 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
2024-10-19 08:49:26 +00:00
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
2024-10-19 09:19:29 +00:00
(S.F.μIso _ _).inv.hom ≫
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom := by
2024-10-18 16:08:17 +00:00
have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
2024-10-19 08:49:26 +00:00
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
2024-10-18 16:08:17 +00:00
(S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by
erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc]
2024-10-19 09:19:29 +00:00
erw [CategoryTheory.IsIso.eq_inv_comp]
2024-10-18 16:08:17 +00:00
exact Eq.symm
(LaxMonoidalFunctor.μ_natural S.F.toLaxMonoidalFunctor (extractTwoAux' i j σ)
(extractTwoAux i j σ))
exact congrArg (λ f => Action.Hom.hom f) h1
lemma contrIso_comm_aux_3 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.map
(S.F.map (extractTwoAux i j σ))).app
PUnit.unit ≫
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom
= (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
2024-10-19 08:49:26 +00:00
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫
2024-10-18 16:08:17 +00:00
(S.F.map (extractTwo i j σ)).hom := by
2024-10-19 08:49:26 +00:00
change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _
2024-10-18 16:08:17 +00:00
have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) =
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
2024-10-19 08:49:26 +00:00
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom) ≫ (S.F.map (extractTwo i j σ)) := by
2024-10-18 16:08:17 +00:00
rw [← Functor.map_comp, ← Functor.map_comp]
apply congrArg
rfl
exact congrArg (λ f => Action.Hom.hom f) h1
2024-10-19 08:49:26 +00:00
def contrIsoComm {n : } {c c1 : Fin n.succ.succ → S.C}
2024-10-18 16:08:17 +00:00
{i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
2024-10-19 09:19:29 +00:00
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶
(Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
2024-10-18 16:08:17 +00:00
lemma contrIso_comm_aux_5 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
2024-10-19 08:49:26 +00:00
= ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
2024-10-18 16:08:17 +00:00
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
2024-10-19 08:49:26 +00:00
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom)
2024-10-19 09:19:29 +00:00
≫ (S.contrIsoComm σ).hom := by
2024-10-18 16:08:17 +00:00
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
rw [contrIso_comm_aux_3 S σ]
rw [contrFin1Fin1_naturality S h σ]
simp [contrIsoComm]
lemma contrIso_comm_map {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map σ) ≫ (S.contrIso c1 i j h).hom =
(S.contrIso c ((OverColor.Hom.toEquiv σ).symm i)
2024-10-19 08:49:26 +00:00
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫
contrIsoComm S σ := by
2024-10-18 16:08:17 +00:00
ext1
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
rw [contrIso_hom_hom]
rw [← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc,
← CategoryTheory.Category.assoc]
rw [contrIso_comm_aux_1 S σ]
rw [CategoryTheory.Category.assoc, CategoryTheory.Category.assoc, CategoryTheory.Category.assoc]
rw [← CategoryTheory.Category.assoc (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom]
rw [contrIso_comm_aux_2 S σ]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
contrIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
Category.assoc]
apply congrArg
apply congrArg
apply congrArg
simpa only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj] using contrIso_comm_aux_5 S h σ
/-- Contraction commutes with `S.F.map σ` on removing corresponding indices from `σ`. -/
lemma contrMap_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map σ) ≫ (S.contrMap c1 i j h) =
(S.contrMap c ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)) ≫
(S.F.map (extractTwo i j σ)) := by
change (S.F.map σ) ≫ ((S.contrIso c1 i j h).hom ≫
(tensorHom (S.contr.app (Discrete.mk (c1 i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom) =
((S.contrIso _ _ _ _).hom ≫
(tensorHom (S.contr.app (Discrete.mk _)) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) ≫ _
rw [← CategoryTheory.Category.assoc]
rw [contrIso_comm_map S σ]
repeat rw [CategoryTheory.Category.assoc]
rw [← CategoryTheory.Category.assoc (S.contrIsoComm σ)]
apply congrArg
rw [← leftUnitor_naturality]
repeat rw [← CategoryTheory.Category.assoc]
apply congrFun
apply congrArg
rw [contrIsoComm]
rw [← tensor_comp]
2024-10-19 08:49:26 +00:00
have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by
2024-10-18 16:08:17 +00:00
rfl
rw [h1, ← tensor_comp]
erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id]
erw [CategoryTheory.Category.comp_id]
rw [S.contr.naturality]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Monoidal.tensorUnit_obj,
Monoidal.tensorUnit_map, Category.comp_id]
end
end TensorStruct
namespace TensorTree
variable {S : TensorStruct}
/-- Permuting indices, and then contracting is equivalent to contracting and then permuting,
once care is taking about ensuring one is contracting the same idices. -/
lemma perm_contr {n : } {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)} (t : TensorTree S c)
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(contr i j h (perm σ t)).tensor
= (perm (extractTwo i j σ) (contr ((Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ) t)).tensor := by
rw [contr_tensor, perm_tensor, perm_tensor]
change ((S.F.map σ) ≫ S.contrMap c1 i j h).hom t.tensor = _
rw [S.contrMap_naturality σ]
rfl
end TensorTree