PhysLean/HepLean/StandardModel/HiggsBoson/TargetSpace.lean

380 lines
15 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
2024-05-03 06:12:59 -04:00
import HepLean.StandardModel.Basic
2024-05-09 15:09:14 -04:00
import HepLean.StandardModel.Representations
import Mathlib.Data.Complex.Exponential
2024-05-06 10:50:13 -04:00
import Mathlib.Tactic.Polyrith
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
2024-05-06 10:50:13 -04:00
import Mathlib.Analysis.InnerProductSpace.Basic
2024-05-08 08:55:37 -04:00
import Mathlib.Analysis.InnerProductSpace.Adjoint
2024-05-06 10:50:13 -04:00
import Mathlib.Geometry.Manifold.ContMDiff.Product
import Mathlib.Algebra.QuadraticDiscriminant
/-!
2024-05-09 15:09:14 -04:00
# The Higgs vector space
2024-05-09 15:09:14 -04:00
This file defines the target vector space of the Higgs boson, the potential on it,
and the representation of the SM gauge group acting on it.
This file is a import of `SM.HiggsBoson.Basic`.
2024-05-08 07:49:28 -04:00
## References
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
-/
universe v u
namespace StandardModel
2024-05-03 06:12:59 -04:00
noncomputable section
open Manifold
open Matrix
open Complex
open ComplexConjugate
2024-05-06 11:09:37 -04:00
/-- The complex vector space in which the Higgs field takes values. -/
2024-05-06 10:50:13 -04:00
abbrev higgsVec := EuclideanSpace (Fin 2)
section higgsVec
2024-05-06 11:09:37 -04:00
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → )` acheived by
casting vectors. -/
2024-05-06 10:50:13 -04:00
def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where
toFun x := x
map_add' x y := by
simp
map_smul' a x := by
simp
lemma smooth_higgsVecToFin2 : Smooth 𝓘(, higgsVec) 𝓘(, Fin 2 → ) higgsVecToFin2 :=
ContinuousLinearMap.smooth higgsVecToFin2
2024-05-09 15:09:14 -04:00
namespace higgsVec
2024-05-09 15:16:38 -04:00
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
@[simps!]
2024-05-09 15:16:38 -04:00
noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) where
2024-05-09 15:09:14 -04:00
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
map_mul' := by
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
rw [repU1.map_mul, fundamentalSU2.map_mul]
rw [mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
repeat rw [mul_assoc]
map_one' := by
2024-05-09 15:09:14 -04:00
simp only [Prod.snd_one, _root_.map_one, Prod.fst_one, mul_one]
2024-05-07 08:50:08 -04:00
2024-05-09 08:16:23 -04:00
/-- An orthonomral basis of higgsVec. -/
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) higgsVec :=
EuclideanSpace.basisFun (Fin 2)
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) →* (higgsVec →L[] higgsVec) where
toFun g := LinearMap.toContinuousLinearMap
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ) :
matrixToLin (star g) = star (matrixToLin g) :=
2024-05-09 15:09:14 -04:00
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
2024-05-09 08:16:23 -04:00
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ) :
matrixToLin g ∈ unitary (higgsVec →L[] higgsVec) := by
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul]
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
simp
2024-05-09 15:16:38 -04:00
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
of `higgsVec`. -/
2024-05-09 08:16:23 -04:00
noncomputable def unitaryToLin : unitaryGroup (Fin 2) →* unitary (higgsVec →L[] higgsVec) where
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
map_mul' g h := by
ext
simp
map_one' := by
ext
simp
2024-05-09 15:16:38 -04:00
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
2024-05-09 08:16:23 -04:00
@[simps!]
def unitToLinear : unitary (higgsVec →L[] higgsVec) →* higgsVec →ₗ[] higgsVec :=
DistribMulAction.toModuleEnd higgsVec
2024-05-09 15:16:38 -04:00
/-- The representation of the gauge group acting on `higgsVec`. -/
2024-05-09 08:16:23 -04:00
@[simps!]
2024-05-09 15:16:38 -04:00
def rep : Representation gaugeGroup higgsVec :=
2024-05-09 08:16:23 -04:00
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
2024-05-09 15:16:38 -04:00
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
2024-05-09 15:09:14 -04:00
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
simp only [higgsRepUnitary_apply_coe]
exact smul_mulVec_assoc (g.2.2 ^ 3) (g.2.1.1) φ
2024-05-09 15:16:38 -04:00
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
2024-05-09 15:09:14 -04:00
higgsRepUnitary_mul g φ
2024-05-09 15:16:38 -04:00
lemma norm_invariant (g : gaugeGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
2024-05-09 08:16:23 -04:00
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
2024-05-07 08:50:08 -04:00
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
def potential (μSq lambda : ) (φ : higgsVec) : := - μSq * ‖φ‖ ^ 2 +
lambda * ‖φ‖ ^ 4
2024-05-09 15:16:38 -04:00
lemma potential_invariant (μSq lambda : ) (φ : higgsVec) (g : gaugeGroup) :
2024-05-09 08:16:23 -04:00
potential μSq lambda (rep g φ) = potential μSq lambda φ := by
simp only [potential, neg_mul]
rw [norm_invariant]
2024-05-07 08:50:08 -04:00
lemma potential_snd_term_nonneg {lambda : } (hLam : 0 < lambda) (φ : higgsVec) :
0 ≤ lambda * ‖φ‖ ^ 4 := by
rw [mul_nonneg_iff]
apply Or.inl
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true]
exact le_of_lt hLam
lemma potential_as_quad (μSq lambda : ) (φ : higgsVec) :
lambda * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq lambda φ ) = 0 := by
simp [potential]
ring
lemma zero_le_potential_discrim (μSq lambda : ) (φ : higgsVec) (hLam : 0 < lambda) :
2024-05-09 15:09:14 -04:00
0 ≤ discrim (lambda) (- μSq ) (- potential μSq lambda φ) := by
2024-05-07 08:50:08 -04:00
have h1 := potential_as_quad μSq lambda φ
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
rw [h1]
exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq)
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact ne_of_gt hLam
lemma potential_eq_zero_sol (μSq lambda : ) (hLam : 0 < lambda)(φ : higgsVec)
(hV : potential μSq lambda φ = 0) : φ = 0 ‖φ‖ ^ 2 = μSq / lambda := by
have h1 := potential_as_quad μSq lambda φ
rw [hV] at h1
have h2 : ‖φ‖ ^ 2 * (lambda * ‖φ‖ ^ 2 + -μSq ) = 0 := by
linear_combination h1
simp at h2
cases' h2 with h2 h2
simp_all
apply Or.inr
field_simp at h2 ⊢
ring_nf
linear_combination h2
lemma potential_eq_zero_sol_of_μSq_nonpos {μSq lambda : } (hLam : 0 < lambda) (hμSq : μSq ≤ 0)
(φ : higgsVec) (hV : potential μSq lambda φ = 0) : φ = 0 := by
cases' (potential_eq_zero_sol μSq lambda hLam φ hV) with h1 h1
exact h1
by_cases hμSqZ : μSq = 0
simpa [hμSqZ] using h1
refine ((?_ : ¬ 0 ≤ μSq / lambda) (?_)).elim
· simp_all [div_nonneg_iff]
intro h
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμSq hμSqZ)
· rw [← h1]
exact sq_nonneg ‖φ‖
lemma potential_bounded_below (μSq lambda : ) (hLam : 0 < lambda) (φ : higgsVec) :
- μSq ^ 2 / (4 * lambda) ≤ potential μSq lambda φ := by
have h1 := zero_le_potential_discrim μSq lambda φ hLam
simp [discrim] at h1
ring_nf at h1
rw [← neg_le_iff_add_nonneg'] at h1
have h3 : lambda * potential μSq lambda φ * 4 = (4 * lambda) * potential μSq lambda φ := by
ring
rw [h3] at h1
have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * lambda )).mpr h1
ring_nf at h2 ⊢
exact h2
lemma potential_bounded_below_of_μSq_nonpos {μSq lambda : } (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq lambda φ := by
simp only [potential, neg_mul, add_zero]
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
field_simp
rw [@mul_nonpos_iff]
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
lemma potential_eq_bound_discrim_zero (μSq lambda : ) (hLam : 0 < lambda)(φ : higgsVec)
(hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
discrim (lambda) (- μSq) (- potential μSq lambda φ) = 0 := by
simp [discrim, hV]
field_simp
ring
lemma potential_eq_bound_higgsVec_sq (μSq lambda : ) (hLam : 0 < lambda)(φ : higgsVec)
(hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
‖φ‖ ^ 2 = μSq / (2 * lambda) := by
have h1 := potential_as_quad μSq lambda φ
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
(potential_eq_bound_discrim_zero μSq lambda hLam φ hV)] at h1
rw [h1]
field_simp
ring_nf
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact ne_of_gt hLam
lemma potential_eq_bound_iff (μSq lambda : ) (hLam : 0 < lambda)(φ : higgsVec) :
potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) ↔ ‖φ‖ ^ 2 = μSq / (2 * lambda) := by
apply Iff.intro
· intro h
exact potential_eq_bound_higgsVec_sq μSq lambda hLam φ h
· intro h
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by
ring_nf
field_simp [potential, hv, h]
ring
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq lambda : } (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq lambda φ = 0 ↔ φ = 0 := by
apply Iff.intro
· intro h
exact potential_eq_zero_sol_of_μSq_nonpos hLam hμSq φ h
· intro h
simp [potential, h]
lemma potential_eq_bound_IsMinOn (μSq lambda : ) (hLam : 0 < lambda) (φ : higgsVec)
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
IsMinOn (potential μSq lambda) Set.univ φ := by
rw [isMinOn_univ_iff]
intro x
rw [hv]
exact potential_bounded_below μSq lambda hLam x
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq lambda : } (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
IsMinOn (potential μSq lambda) Set.univ φ := by
rw [isMinOn_univ_iff]
intro x
rw [hv]
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
lemma potential_bound_reached_of_μSq_nonneg {μSq lambda : } (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
use ![√(μSq/(2 * lambda)), 0]
refine (potential_eq_bound_iff μSq lambda hLam _).mpr ?_
simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
field_simp [mul_pow]
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq lambda : } (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
apply Iff.intro
· intro h
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
have hm := isMinOn_univ_iff.mp h φm
rw [hφ] at hm
have h1 := potential_bounded_below μSq lambda hLam φ
rw [← potential_eq_bound_iff μSq lambda hLam φ]
exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm
· intro h
rw [← potential_eq_bound_iff μSq lambda hLam φ] at h
exact potential_eq_bound_IsMinOn μSq lambda hLam φ h
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq lambda : } (hLam : 0 < lambda) (hμSq : μSq ≤ 0) :
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
apply Iff.intro
· intro h
have h0 := isMinOn_univ_iff.mp h 0
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
rw [← (potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ)]
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
· intro h
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
2024-05-08 07:49:28 -04:00
/-- Given a Higgs vector, a rotation matrix which puts the fst component of the
vector to zero, and the snd componenet to a real -/
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) :=
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
lemma rotateMatrix_star (φ : higgsVec) :
star φ.rotateMatrix =
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
simp [star]
rw [rotateMatrix, conjTranspose]
ext i j
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
simp [rotateMatrix, det_fin_two]
have h1 : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
rfl
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) := by
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
erw [mul_fin_two, one_fin_two]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
congr
field_simp
ext i j
fin_cases i <;> fin_cases j <;> field_simp
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
rfl
· ring_nf
· ring_nf
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
rfl
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) :=
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
/-- Given a Higgs vector, an element of the gauge group which puts the fst component of the
vector to zero, and the snd componenet to a real -/
2024-05-09 15:16:38 -04:00
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
2024-05-08 07:49:28 -04:00
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
2024-05-09 15:09:14 -04:00
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
rw [rep_apply]
simp [rotateGuageGroup, rotateMatrix]
2024-05-08 07:49:28 -04:00
ext i
fin_cases i
simp [mulVec, vecHead, vecTail]
ring_nf
simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons]
simp [mulVec, vecHead, vecTail]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
rfl
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
2024-05-09 15:16:38 -04:00
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
2024-05-08 07:49:28 -04:00
by_cases h : φ = 0
· use ⟨1, 1, 1⟩
2024-05-09 15:09:14 -04:00
simp [h]
2024-05-08 07:49:28 -04:00
ext i
fin_cases i <;> rfl
· use rotateGuageGroup h
exact rotateGuageGroup_apply h
2024-05-07 08:50:08 -04:00
end higgsVec
2024-05-06 10:50:13 -04:00
end higgsVec
2024-05-03 06:12:59 -04:00
end
end StandardModel